【题目】在△ABC 中,AB=AC,D 是直线 BC 上一点(不与点 B、C 重合),以 AD 为一边在 AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接 CE.
(1)如图 1,当点 D 在线段 BC 上时,求证:△ABD≌△ACE;
(2)如图 2,当点 D 在线段 BC 上时,如果∠BAC=90°,求∠BCE 的度数;
(3)如图 3,若∠BAC=α,∠BCE=β.点 D 在线段 CB 的延长线上时,则α、β之间有怎样 的数量关系?并证明你的结论.
【答案】(1)见解析;(2)90;(3)
【解析】(1)首先求出∠BAD=∠CAE,再利用SAS得出△ABD≌△ACE即可;
(2)由ABAC,BAC90,推出∠ABDACB45 ,由ABD≌ACE,得到∠ABDACE,等量代换得到∠ABDACE,即可求出∠BCE;
(3)当D在CB的延长线上时,α=β,求出∠BAD=∠CAE.推出△ADB和△AEC,推出∠BAC=∠BCE.根据三角形外角性质求出即可.
(1)∵∠DAE=∠BAC ,
∠BAD=∠EAC
∵在△ABD和△ACE中,
AB AC,∠BAD=∠CAE,AD=AE,
ABD≌ACE SAS ;
(2)∵AB AC,BAC 90 ,
∠ABDACB 45 ,
∵ABD≌ACE ,
∠ABDACE,
∠ABDACE,
∠BCEACDACE90,
(3)当点D在线段CB的延长线上时,α=β.
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵在△ADB和△AEC中,
AD=AE,∠DAB=∠EAC,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
科目:初中数学 来源: 题型:
【题目】如图,网格中每个小正方形边长为1,△ABC的顶点都在格点(网格线的交点)上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)请在图中画出平移后的△A′B′C′;
(2)画出平移后的△A′B′C′的中线B′D′;
(3)若连接BB′,CC′,则这两条线段的关系是_______;
(4)△ABC的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,∠ABC=45°,OC∥AD,AD交BC的延长线于D,AB交OC于E.
(1)求证:AD是⊙O的切线;
(2)若⊙O的直径为6,线段BC=2,求∠BAC的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2(k+1)x+k2﹣2k﹣3与x轴有两个交点.
(Ⅰ)求k取值范围;
(Ⅱ)当k取最小整数时,此二次函数的对称轴和顶点坐标;
(Ⅲ)将(Ⅱ)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你求出新图象与直线y=x+m有三个不同公共点时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价(元/张)之间满足一次函数关系: , 是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入运营成本).
(1)试求w与之间的函数关系式;
(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A. 504m2 B. m2 C. m2 D. 1009m2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)
(1)求k的值;
(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,BC=12,E为边AC的中点,
(1)如图1,过点E作EH⊥BC,垂足为点H,求线段CH的长;
(2)作线段BE的垂直平分线分别交边BC、BE、AB于点D、O、F.
①如图2,当∠BAC=90°时,求BD的长;
②如图3,设tan∠ACB=x,BD=y,求y与x之间的函数表达式和tan∠ACB的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com