【题目】如图有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( )
A.4cm2B.8cm2
C.16cm2D.无法确定
科目:初中数学 来源: 题型:
【题目】如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.
(1)按照上述定义判断下列函数中,_____是偶函数.
.y=3x .y=x+1 .y= .y=x2
(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P,求△ABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.
(1)试用含m的代数式表示抛物线的顶点坐标;
(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.
(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,请求出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;
(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 ,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点和,与轴交于点顶点为.
求抛物线的解析式;
求的度数;
若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.
①求线段的最大值;
②若是等腰三角形,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G.
(1)求证:△ABE∽△EGB.
(2)若AB=4,求CG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com