精英家教网 > 初中数学 > 题目详情

【题目】⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.
(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;
(2)如图(2),CD与⊙O交于另一点E.BD:DE:EC=2:3:5,求圆心O到直线CD的距离;
(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?

【答案】
(1)证明:如图(1),连接OC,

∵OA=OC,

∴∠OAC=∠OCA,

又∵AB是⊙O的直径,

∴∠ACB=90°,

又∵∠BCD=∠BAC=∠OCA,

∴∠BCD+∠OCB=90°,即OC⊥CD,

∴CD是⊙O的切线


(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,

∴△BCD∽△EAD,

又∵BD:DE:EC=2:3:5,⊙O的半径为5,

∴BD=2,DE=3,EC=5,

如图(2),连接OC、OE,则△OEC是等边三角形,

作OF⊥CE于F,则EF= CE= ,∴OF=

∴圆心O到直线CD的距离是


(3)解:这样的情形共有出现三次:

当点D在⊙O外时,点E是CD中点,有以下两种情形,如图1、图2;

当点D在⊙O内时,点D是CE中点,有以下一种情形,如图3.


【解析】(1)连接OC,根据弦切角定理和圆的性质可得到∠BCD=∠BAC=∠OCA,结合圆周角定理可求得∠OCD=90°,可证明CD是切线;(2)先证明△BCD∽△EAD,结合条件可求得BD=2,DE=3,EC=5,在△OBC中可求得O到CD的距离;(3)分点D在⊙O外和点D在⊙O内两种情况,当D在⊙O外时又分D在A点左边和D在B点右边两种情况,当D在⊙O内时只有一种,结合图形可给出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则 的长是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣4|﹣22+ ﹣tan60°(说明:本题不允许使用计算器计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.

(1)抛物线的解析式是
(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,过P′作P′F∥PE交x轴于F.设S四边形EPP′F=y,EF=x,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是两个全等的三角形,.现将按如图所示的方式叠放在一起保持不动,运动,且满足:点E在边BC上运动(不与点BC重合),且边DE始终经过点AEFAC交于点M .

(1)求证:∠BAE=MEC

(2)当EBC中点时,请求出MEMF的值;

(3)在的运动过程中,能否构成等腰三角形?若能,请直接写出所有符合条件的BE的长;若不能,则请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P直线OB上的点,要使点P,M,N构成等腰三角形的点P________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2 , 且(x1﹣2)(x1﹣x2)=0,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且,,之间的距离为2 , ,之间的距离为3 ,则AC2= _______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,BE平分∠ABCAC边于点E,过点EDEBCAB于点D

(1)求证:△BDE为等腰三角形;

(2)若点DAB中点,AB=6,求线段BC的长;

(3)在图2条件下,若∠BAC=60°,动点P从点B出发,以每秒1个单位的速度沿射线BE运动,请直接写出图3当△ABP为等腰三角形时t的值.

查看答案和解析>>

同步练习册答案