精英家教网 > 初中数学 > 题目详情

【题目】如图,是两个全等的三角形,.现将按如图所示的方式叠放在一起保持不动,运动,且满足:点E在边BC上运动(不与点BC重合),且边DE始终经过点AEFAC交于点M .

(1)求证:∠BAE=MEC

(2)当EBC中点时,请求出MEMF的值;

(3)在的运动过程中,能否构成等腰三角形?若能,请直接写出所有符合条件的BE的长;若不能,则请说明理由

【答案】(1)证明见解析;(2)见解析;(3)见解析.

【解析】

(1)已知△ABC≌△DEF,根据全等三角形的性质可得∠ABC=∠DEF,又因∠AEC=∠B+∠BAE,∠AEC=∠AEM+∠MEC,即可得∠B+∠BAE=∠AEM+∠MEC,所以∠BAE=∠MEC;(2)EBC中点时, AB=AC,根据等腰三角形三线合一的性质可得AEBC,∠EAM=60°,再由∠DEM=30°即可证得ACEF; Rt△ABE中,∠B=30°,求得BE=,即可求得BC=3;在Rt△CEM中,∠C=30°,EC=E,求得EM=根据全等三角形的性质可得BC=EF=3,所以FM= EF-EM=即可得EM:FM=1:3 ;(3)分AM=AE、EA=EM、三种情况求解即可.

1)证明:∵△ABC≌△DEF

∴∠ABC=DEF

∵∠AEC=B+BAE,AEC=AEM+MEC;

∴∠B+BAE=AEM+MEC,

即∠BAE=MEC ;

2)当EBC中点时,

AB=AC,

∴AE⊥BC,BE=EC= ,∠EAM=60°,

又∵∠DEM=30°,

ACEF;

∴∠B=∠C=30°,

Rt△ABE中,∠B=30°,

∴BE=

∴BC=3;

Rt△CEM中,∠C=30°,EC=

∴EM=

△ABC≌△DEF,

BC=EF=3,

∴FM= EF-EM=

EMFM=13;

3)当2时,是等腰三角形.

①当时,如图

此时点E与点B重合,与题意矛盾(舍去 ) ;

②当时,如图

由(1)知,

,

③当时,如图

BE中点I,连结AI,

是等边三角形,

,在中,

由勾股定理,得

,解得

.

综上所述,当2时,是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20/每天的维护费用,设每间客房的定价提高了x元.

(1)填表(不需化简)

入住的房间数量

房间价格

总维护费用

提价前

60

200

60×20

提价后

  

  

  

(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,按下列要求作图(第(1)、(2)小题用尺规作图,第(3)小题不限作图工具,保留作图痕迹).

(1)作∠B的角平分线;

(2)作BC的中垂线;

(3)以BC边所在直线为对称轴,作ABC的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.
(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;
(2)如图(2),CD与⊙O交于另一点E.BD:DE:EC=2:3:5,求圆心O到直线CD的距离;
(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,E,F分别在边AC、BC上,满足AE=CF,连接BE,AF交于点P.

(1)求证:ABE≌△CAF

(2)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.

(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算: ﹣( 1+(π﹣ 0﹣(﹣1)100
(2)已知|a+1|+(b﹣3)2=0,求代数式( )÷ 的值.

查看答案和解析>>

同步练习册答案