精英家教网 > 初中数学 > 题目详情

【题目】如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2
(1)求证:四边形AO1BO2是菱形;
(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2O2D;
(3)在(2)的条件下,若△AO2D的面积为1,求△BO2D的面积.

【答案】
(1)证明:∵⊙O1与⊙O2是等圆,

∴AO1=O1B=BO2=O2A,

∴四边形AO1BO2是菱形;


(2)证明:∵四边形AO1BO2是菱形,

∴∠O1AB=∠O2AB,

∵CE是⊙O1的切线,AC是⊙O1的直径,

∴∠ACE=∠AO2C=90°,

∴△ACE∽△AO2D,

即CE=2DO2


(3)解:∵四边形AO1BO2是菱形,

∴AC∥BO2

∴△ACD∽△BO2D,

∴AD=2BD,


【解析】(1)根据⊙O1与⊙O2是等圆,可得AO1=O1B=BO2=O2A,利用四条边都相等的四边形是菱形可判定出结论;(2)根据已知得出△ACE∽△AO2D,进而得出 ,即可得出答案;(3)首先证明△ACD∽△BO2D,得出 ,AD=2BD,再利用等高不等底的三角形面积关系得出答案即可.
【考点精析】掌握菱形的判定方法和相交两圆的性质是解答本题的根本,需要知道任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;相交的两个圆的连心线垂直平分两圆的公共弦.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列解题过程:

已知a,b,cABC的三边长,且满足a2c2-b2c2=a4-b4,试判断ABC的形状.

解:因为a2c2-b2c2=a4-b4

所以c2(a2-b2)=( a2-b2)( a2+b2).

所以c2= a2+b2

所以ABC是直角三角形.

回答下列问题:

(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为

(2)错误的原因为

(3)请你将正确的解答过程写下来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=4cmBC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.

1)点Q的速度为 cm/s(用含x的代数式表示);

 (2)求点P原来的速度.

3)判断E点的位置并求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AD是△ABC的角平分线,△ABC的一个外角的平分线AE交边BC的延长线于点E,且∠BAD=20°,∠E=30°,则∠B的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某玩具厂分别安排甲乙两个车间加工1000个同一型号的奥运会吉祥物,每名工人每天加工吉祥物的个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工,刚开始加工时,甲车间有10名工人,乙车间有12名工人,图中线段OB和折线ACB分别表示两个车间的加工情况.依据图中提供的信息,完成下列各题:

(1)线段OB反映的是   车间的加工情况;

(2)开始加工后,甲车间加工多少天后,两车间加工吉祥物数相同?

(3)根据折线段反映的加工情况,请你提出一个问题,并给出解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于(  )

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AOB=α°,∠CODAOB内部且COD=β°.

(1)αβ满足|α-2β|+(β-60)2=0,则①α=

②试通过计算说明AODCOB有何特殊关系;

(2)(1)的条件下,如果作OE平分BOC,请求出AOCDOE的数量关系;

(3)α°,β°互补,作AOC,∠DOB的平分线OMON试判断OMON的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴于点A、B两点,交y轴于点C,其中点B的坐标为(3,0).

(1)求抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式;
(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老王的鱼塘里年初养了某种鱼2000到年底捕捞出售为了估计鱼的总产量从鱼塘里捕捞了三次得到如下表的数据:

鱼的条数

平均每条鱼的质量

第一次捕捞

10

1.7千克

第二次捕捞

25

1.8千克

第三次捕捞

15

2.0千克

若老王放养这种鱼的成活率是95%,则:

(1)鱼塘里这种鱼平均每条重约多少千克?

(2)鱼塘里这种鱼的总产量是多少千克?

查看答案和解析>>

同步练习册答案