分析 (1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN,于是得到结论;
(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明.
解答 解:(1)∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACB=∠ECD=90°}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠CBD+∠BDC=90°,
∴∠EAC+∠BDC=90°,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM=$\frac{1}{2}$BD,PN=$\frac{1}{2}$AE,
∴PM=PM,
∵PM∥BD,PN∥AE,
∴∠NPD=∠EAC,∠MPA=∠BDC,
∵∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,
∴△PMN为等腰直角三角形;
(2)①中的结论成立,
理由:设AE与BC交于点O,如图②所示:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACB=∠ECD=90°}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠CAE=∠CBD.
∵∠AOC=∠BOE,∠CAE=∠CBD,
∴∠BHO=∠ACO=90°,
∴AE⊥BD,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=$\frac{1}{2}$BD,PM∥BD,PN=$\frac{1}{2}$AE,PN∥AE,
∴PM=PN.
∵AE⊥BD,
∴PM⊥PN,
∴△PMN为等腰直角三角形.
点评 本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质以及三角形中位线定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 16 | B. | 29 | C. | 19 | D. | 48 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com