精英家教网 > 初中数学 > 题目详情
16.如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6. 将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.
(1)请在图中画出△COD;
(2)求点A旋转过程中所经过的路程(精确到0.1).

分析 (1)作点A关于x的对称点C,在OA上截取OD=OB,则△OCD满足条件;
(2)由于点A旋转的路径为以O为圆心,OA为半径,圆心角为60度所对的弧,则根据弧长公式可计算出点A旋转过程中所经过的路程长.

解答 解:(1)如图,△COD为所作;

(2)点A旋转过程中所经过的路程长=$\frac{60•π•6}{180}$=2π≈6.3.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.已知点A(4,y1),B($\sqrt{2}$,y2),C(-2,y3)都在二次函数y=-2x2的图象上,则y1,y2,y3的大小关系是(  )
A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y2>y1>y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.
(1)求证:△PMN为等腰直角三角形;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,AD是BC边上的高,以D为直角顶点的Rt△DEF绕点旋转,在旋转过程中,DE、EF分别与边AB、AC交于点M、N,则线段MN的最大值与最小值的差为$\frac{16}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.若我们规定二次函数y1=ax2+bx+c(α≠0)的″负相关函数″为y2=-ax2+bx-c.
(1)写出二次函数y1=2x2+x-3的″负相关函数″y2
(2)若点M(m,n)在二次函数y1=2x2+x-3的图象上,证明点M′(-m,-n)在它的″负相关函数″的图象上;
(3)如图所示是二次函数y1=2x2+x-3和它的″负相关函数″的图象,这两条抛物线有两个交点,A、B两点分别在它们交点之间的两条抛物线上,若线段AB平行于y轴,求线段AB的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:$\frac{a-b}{a+3b}$÷$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+6ab+9{b}^{2}}$-1;其中a是8的负的平方根,b是18的算术平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)求参加体育锻炼时间为1小时的人数.
(2)求参加体育锻炼时间为1.5小时的人数.
(3)补全频数分布直方图.
(4)这次调查参加体育锻炼时间的中位数是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在长为6m,宽为4m的矩形地面上修建两条宽均为1m的道路,余下部分做为耕地,根据图中数据,计算耕地面积为15m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{4}$-$\root{3}{8}$+$\sqrt{(-3)^{2}}$-($\sqrt{5}$)2
(2)$\sqrt{4}$+$\root{3}{8}$+(-1)2014-|1-$\sqrt{2}$|

查看答案和解析>>

同步练习册答案