精英家教网 > 初中数学 > 题目详情

【题目】在学习轴对称的时候,老师让同学们思考课本中的探究题.

如图(1),要在燃气管道l上修建一个泵站,分别向AB两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?

你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?

聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使APBP的和最小.他的做法是这样的:

作点B关于直线l的对称点B′

连接AB′交直线l于点P,则点P为所求.

请你参考小华的做法解决下列问题.如图在△ABC中,点DE分别是ABAC边的中点,BC=6BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.

1)在图中作出点P(保留作图痕迹,不写作法).

2)请直接写出△PDE周长的最小值:

【答案】1)见解析(28

【解析】

1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点PP点即为所求.

2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案:

解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点PP点即为所求.

2DE分别是ABAC边的中点,

∴DE△ABC中位线.

∵BC=6BC边上的高为4

∴DE=3DD′=4

∴△PDE周长的最小值为:DE+D′E=35=8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了体育活动更好的开展,决定购买一批篮球和足球.据了解:篮球的单价比足球的单价多20元,用1000元购买篮球的个数与用800元购买足球的个数相同.

1)篮球、足球的单价各是多少元?

2)若学校打算购买篮球和足球的数量共100个,且购买的总费用不超过9600元,问最多能购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点ODEAB于点E,连接OE,若DEBE1,则∠AOE的度数是(  )

A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图①,点MN把线段AB分割成AMMNBN,若以AMMNBN为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

1)已知点MN是线段AB的勾股分割点,若AM2MN3,求BN的长;

2)如图2,在RtABC中,ACBC,点MN在斜边AB上,∠MCN45°,求证:点MN是线段AB的勾股分割点(提示:把ACM绕点C逆时针旋转90°

3)在(2)的前提下,若∠BCN15°BN1.求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):

温度x/

﹣4

﹣2

0

2

4

6

植物每天高度的增长量y/mm

41

49

49

41

25

1

由这些数据,科学家推测出植物每天高度的增长量y是温度x的二次函数,那么下列三个结论:

①该植物在0℃时,每天高度的增长量最大;

②该植物在﹣6℃时,每天高度的增长量能保持在25mm左右;

③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长.

上述结论中,所有正确结论的序号是

A. ①②③ B. ①③ C. ①② D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过点

(1)求抛物线的表达式和顶点坐标;

(2)将抛物线在AB之间的部分记为图象M(含AB两点)将图象M沿轴翻折得到图象N如果过点的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

1每千克核桃应降价多少元?

21问的条件下,平均每天获利不变,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

3写出每天总利润与降价元的函数关系式,为了使每天的利润最大,应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.

(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.

(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

查看答案和解析>>

同步练习册答案