精英家教网 > 初中数学 > 题目详情

【题目】如图1,O在直线MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).

【答案】(1)59°40′; 29°20′; 60°40′; (2)2α;

(3)360°-2α.

【解析】

(1)根据∠BOC=∠AOB-∠AOC进行计算即可,

OC平分∠MOB得∠BOM=2∠BOC,则∠AOM=∠BOM-∠AOB,

∠BON=180°-∠BOM,代入计算即可得出答案;

(2)仿照(1)中方法,先求出∠BOC,再求得∠BOM,最后再代入∠BON=180°-∠BOM化简即可;

(3)由图可知∠BOC=∠AOC-∠AOB,然后由角平分线定义得∠BOM=2∠BOC,最后代入∠BON=180°-∠BOM化简即可得出答案.

解:(1)∠BOC=∠AOB-∠AOC

=90°-30°20′

=59°40′,

OC平分∠MOB,

∴∠BOM=2∠BOC=2×59°40′=119°20′

∴∠AOM=∠BOM-∠AOB

=119°20′-90°

=29°20′,

∠BON=180°-∠BOM

=180°-119°20′

=60°40′.

故答案为:59°40′,29°20′,60°40′;

(2)∠BOC=∠AOB-∠AOC=90°-α

OC平分∠MOB,

∴∠BOM=2∠BOC=2(90°-α)=180°-2α

∴∠BON=180°-∠BOM

=180°-(180°-2α)

=2α

故答案为:2α;

(3)由图可知∠BOC=∠AOC-∠AOB=α-90°,

OC平分∠MOB,

∴∠BOM=2∠BOC=2(α-90°)= 2α-180°,

∴∠BON=180°-∠BOM

=180°-(2α-180°)

=360°-2α

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

a

b

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C,D,E将线段AB分成2:3:4:5四部分,M,P,Q,N分别是AC,CD,DE,EB的中点,且MN=21,求线段PQ的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,有两边长分别为1513,第三边上的高为12,则第三边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,轴,点从原点出发在轴上以单位/秒的速度向轴的正方向运动,运动的时间为秒.平分 (提示:中,,若,反之亦然)

1)当时,

2)当的面积为时,求点运动的时间

3)当时,求的度数(用含的式子表示,且不含绝对值)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种玩具盒的进价和售价如下表,预计购进乙品牌文具盒的数量y(个)与甲品牌玩具盒数量x(个)之间的函数关系如图所示.

进价(元)

15

30

售价(元)

20

38

1yx之间的函数关系式是   

2)若超市准备用不超过6000元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?

3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的关系式,并求出获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.

(1)试说明点N也在函数y=(x>0)的图象上;

(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y(x>0)的图象仅有一个交点时,求直线M'N′的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长青化工厂与AB两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2/(吨·千米),铁路运价为1.5/(吨·千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.

1)求:该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?

2)这批产品的销售款比原料费与运输费的和多多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,双曲线 与直线 交于点A(3,1).

(1)求直线和双曲线的解析式;
(2)直线 与x轴交于点B,点P是双曲线 上一点,过点P作直线PC∥x轴,交y轴于点C,交直线 于点D.若DC=2OB,直接写出点 的坐标为

查看答案和解析>>

同步练习册答案