精英家教网 > 初中数学 > 题目详情

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2两图的阴影部分面积,可以得到乘法公式 (用式子表达);

(4)运用你所得到的公式,计算下列各题:

①(2m+n-p)(2m-n+p);②10.3×9.7.

【答案】(1)a2 -b2(2)a-ba+b(a+b)(a-b)(3)(a+b)(ab)=a2 b2(4)4m2 -n2 +2np-p2;②99.91.

【解析】

(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;

(2)根据图1可得矩形的长和宽,然后利用矩形面积公式进行求解即可;

(3)利用面积相等列出等式即可;

(4)①先分组,然后利用平方差公式简便计算即可;

②写成两个数的和与两个数的差的形式,然后利用平方差公式简便计算即可.

(1)利用正方形的面积公式可知:阴影部分的面积=a2 -b2

故答案为:a2 -b2

(2)由图可知矩形的宽是a-b,长是a+b,面积是(a+b)(a-b)

故答案为:a-ba+b(a+b)(a-b)

(3)由阴影部分的面积不变可得(a+b)(ab)=a2 b2

故答案为:(a+b)(ab)=a2 b2

(4)①原式=[2m+(n-p)][2m-(n-p)] =(2m)2 -(n-p)2 =4m2 -n2 +2np-p2

②原式=(10+0.3)×(10-0.3)=102 -0.32=100-0.09=99.91.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A,B分别在反比例函数y= (x>0),y= (x>0)的图象上且OA⊥OB,则tanB为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=( )

A.60°
B.65°
C.72°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学在两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是元,且随身听的单价比书包的单价的倍少元.

1)求该同学看中的随身听和书包的单价各是多少元?

2)某一天该同学上街,恰好赶上商家促销,超市所有商品打八五折销售,超市全场购物每满元返购物券元销售(不足元不返券,购物券全场通用),但他只带了元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,AB=AC,ADABC的角平分线,DEAB,DFAC,垂足分别为E,F.则下列结论:AD上任意一点到点C,B的距离相等;AD上任意一点到边AB,AC的距离相等;BD=CD,ADBC;④∠BDE=CDF.其中正确的个数为(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,AEF是等边三角形,连接AC交EF于G,下列结论:BE=DF,②∠DAF=15°,AC垂直平分EF,BE+DF=EF,SCEF=2SABE.其中正确结论有【 】个.

A.2 B.3 C.4 D.5

查看答案和解析>>

同步练习册答案