精英家教网 > 初中数学 > 题目详情

【题目】某同学在两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是元,且随身听的单价比书包的单价的倍少元.

1)求该同学看中的随身听和书包的单价各是多少元?

2)某一天该同学上街,恰好赶上商家促销,超市所有商品打八五折销售,超市全场购物每满元返购物券元销售(不足元不返券,购物券全场通用),但他只带了元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?

【答案】(1)随身听和书包的单价各是360元,92元(2)见解析

【解析】

(1)设书包的单价为x元,则随身听的单价为(4x-8),根据随身听和书包单价之和是452元,列方程求解即可;

(2)根据两商家的优惠方式分别计算是否两家都可以选择,比较钱数少的则购买更省钱.

(1)设书包的单价为x元,则随身听的单价为(4x-8)元,

根据题意,得4x-8+x=452

解得:x=92

4x-8=4×92-8=360

答:随身听和书包的单价各是360元,92元;

(2)在超市A购买随身听与书包各一件需花费现金:452×85%=384.2()

因为384.2400,所以可以选择超市A购买;

在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362()

因为362400,所以也可以选择在B超市购买,

因为362<384.2,所以在超市B购买更省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB内有一点P

1)过点PPCOBOA于点C,画PDOAOB于点D

2)写出图中互补的角

3)写出图中相等的角

4)试说明图某一对相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABD∠BDC的平分线交于点EBE的延长线交CD于点F,且∠1+∠2=90°.猜想∠2∠3的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2两图的阴影部分面积,可以得到乘法公式 (用式子表达);

(4)运用你所得到的公式,计算下列各题:

①(2m+n-p)(2m-n+p);②10.3×9.7.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ACBD相交于点OADBCAEBD于点ECFBD于点FBEDF.求证:

1ADE≌△CBF

2OAOC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】联想三角形外心的概念,我们可引入如下概念。

定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。

举例:如图1,若PA=PB,则点P为△ABC的准外心。

应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数。

探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD的对角线ACBD相交于点OEF经过点O,分别交ADBC于点EF,且OE4AB5BC9,则四边形ABFE的周长是( )

A. 13 B. 16 C. 22 D. 18

查看答案和解析>>

同步练习册答案