精英家教网 > 初中数学 > 题目详情

【题目】联想三角形外心的概念,我们可引入如下概念。

定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。

举例:如图1,若PA=PB,则点P为△ABC的准外心。

应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数。

探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长。

【答案】∠APB=90°PA=2或

【解析】解:应用:①若PB=PC,连接PB,

则∠PCB=∠PBC,

∵CD为等边三角形的高,∴AD=BD,∠PCB=30°。

∴∠PBD=∠PBC=30°,∴PD=DB=AB。

与已知PD=AB矛盾,∴PB≠PC。

②若PA=PC,连接PA,同理可得PA≠PC。

③若PA=PB,由PD=AB,得PD=AD =BD,∴∠APD=∠BPD=45°。∴∠APB=90°。

探究:∵BC=5,AB=3,∴AC=

①若PB=PC,设PA=,则,∴,即PA=

②若PA=PC,则PA=2。

③若PA=PB,由图知,

在Rt△PAB中,不可能。

∴PA=2或

应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数。

探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以下叙述正确的有(

①对顶角相等;②同位角相等;③两直角相等;④邻补角相等;⑤多边形的外角和都相等;⑥三角形的中线把原三角形分成面积相等的两个三角形

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学在两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是元,且随身听的单价比书包的单价的倍少元.

1)求该同学看中的随身听和书包的单价各是多少元?

2)某一天该同学上街,恰好赶上商家促销,超市所有商品打八五折销售,超市全场购物每满元返购物券元销售(不足元不返券,购物券全场通用),但他只带了元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,AB=AC,ADABC的角平分线,DEAB,DFAC,垂足分别为E,F.则下列结论:AD上任意一点到点C,B的距离相等;AD上任意一点到边AB,AC的距离相等;BD=CD,ADBC;④∠BDE=CDF.其中正确的个数为(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DAC+∠ACB=180°EF//BCCE平分BCFDAC=3∠BCFACF=20°,则FEC的度数是(  )

A.10°B.20°C.15°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:ADBCDEGBCG,∠E=1,求证:AD平分∠ABC.下面是部分推理过程,请你将其补充完整:

ADBCDEGBC(已知)

∴∠ADC=EGC=90°

EGAD

∴∠E=________ )、

1=__________

又∵∠E=1(已知)

∴∠2=3

AD平分∠BAC (

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC,D为BC上一点,E为AC上一点,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=ABAE.
求证:DE是⊙O的切线.

查看答案和解析>>

同步练习册答案