【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.
【答案】(1)0.9;(2)详见解析;(3)0.7, .
【解析】试题分析:
(1)观察、分析表格中的数据可知,当取0.7和2.3时,对应的的值是相等的,而在轴上0.7和2.3这两个数是关于1.5对称的,1.0和2.0也是关于1.5对称的,由此可知当时, ;
(2)把(1)中所得结果在坐标系描出点(1.0,0.9),并用平滑的曲线连接所有描出的点,即可得到该函数的图象;
(3)①观察图象可知,该函数的图象是一根抛物线,其对称轴为直线,由此可知的最小值为0.7,即线段BD′的最小值约为0.7;②观察(2)中所得函数图象、分析表格中的数据可知当BD′BD,即时, 的取值范围约为: .
试题解析:
(1)∵当和时, 的值都为,
∴函数图象是这两个点是对称的,对称轴为直线,
又∵也是关于直线对称的,
∴当时, ;
(2)根据(1)所得结果在坐标系描出点(1.0,0.9),并顺次用平滑曲线连接图中各点得到如下图所示的函数图象:
(3)①结合(1)、(2)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,结合表格中的数据可知, 的最小值为0.7,即线段BD′的最小值约为0.7cm;
②观察(2)中所得函数图象、分析表格中的数据可知:当BD′BD,即时, 的取值范围约为: .
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程:
===-2;
==.
请回答下列问题:
(1)观察上面的解题过程,请直接写出式子= ;
(2)观察上面的解题过程,请直接写出式子= ;
(3)利用上面所提供的解法,请求+···+的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古代阿拉伯数学家泰比特·伊本·奎拉对勾股定理进行了推广研究:如图(图1中为锐角,图2中为直角,图3中为钝角).
在△ABC的边BC上取, 两点,使,则∽∽, , ,进而可得 ;(用表示)
若AB=4,AC=3,BC=6,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作一个30°角”的尺规作图过程.
请回答:该尺规作图的依据是______________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.
求:(1)转动转盘,转出的数字大于3的概率是多少?
(2)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是 .
②这三条线段能构成等腰三角形的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于⊙C与⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q可以与点P重合),且,则点P称为点A关于⊙C的“生长点”.
已知点O为坐标原点,⊙O的半径为1,点A(-1,0).
(1)若点P是点A关于⊙O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标________;
(2)若点B是点A关于⊙O的“生长点”,且满足,求点B的纵坐标t的取值范围;
(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直接写出b的取值范围是_____________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )
A.2.2米B.2.3米C.2.4米D.2.5米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天,小明在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式,比如图②可以解释为等式:.
(1)则图③可以解释为等式: .
(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为,并请在图中标出这个长方形的长和宽.
(3)如图④,大正方形的边长为,小正方形的边长为,若用、表示四个长方形的两边长(),观察图案,指出以下关系式:();();(); ().其中正确的关系式的个数有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:AD=AF;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com