精英家教网 > 初中数学 > 题目详情

【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)求该班的人数;

(2)请把折线统计图补充完整;

(3)求扇形统计图中,网络文明部分对应的圆心角的度数;

(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

【答案】(1)48(2)图形见解析(3)45°(4)

【解析】

试题分析:(1)根据参加生态环保的人数以及百分比,即可解决问题;

(2)社区服务的人数,画出折线图即可;

(3)根据圆心角=360°×百分比,计算即可;

(4)用列表法即可解决问题;

试题解析:(1)该班全部人数:12÷25%=48人.

(2)48×50%=24,折线统计如图所示:

(3)×360°=45°.

(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:

则所有可能有16种,其中他们参加同一活动有4种,

所以他们参加同一服务活动的概率P==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个零件的形状如图,按规定∠A= 90°,∠B、∠C 分别是 32°和 21°.某检验工人量得∠BDC= 148°,就断定这个零件不合格,试用三角形的有关知识说明零件不合格的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为(
A.3.9×1010
B.3.9×109
C.0.39×1011
D.39×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】说明代数式[(x﹣y)2﹣(x+y)(x﹣y)(﹣2y)+y的值,与y的值无关.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=30°.

(1)求证:ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;

(3)当ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形有两条边分别是37,则这个三角形的周长是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)
示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
(1)尝试:分解因式:x2+6x+8=(x+)(x+);
(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园平面图上有一条长12cm的绿化带.如果比例尺为12000,那么这条绿化带的实际长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题。下面我们来探究由数思形,以形助数的方法在解决代数问题中的应用.

探究一:求不等式的解集

1)探究的几何意义

如图,在以O为原点的数轴上,设点A'对应点的数为,由绝对值的定义可知,点A'与O的距离为

可记为:AO=。将线段AO向右平移一个单位,得到线段AB,,此时点A对应的数为,点B的对应数是1

因为AB= AO,所以AB=

因此,的几何意义可以理解为数轴上所对应的点A1所对应的点B之间的距离AB

2)求方程=2的解

因为数轴上3所对应的点与1所对应的点之间的距离都为2,所以方程的解为

3)求不等式的解集

因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围。

请在图的数轴上表示的解集,并写出这个解集

探究二:探究的几何意义

1)探究的几何意义

如图,在直角坐标系中,设点M的坐标为,过MMPx轴于P,作MQy轴于Q,则点P点坐标(),Q点坐标(),|OP|=|OQ|=

RtOPM中,PMOQy,则

因此的几何意义可以理解为点M与原点O0,0)之间的距离OM

2)探究的几何意义

如图,在直角坐标系中,设点 A'的坐标为,由探究(二)(1)可知,

AO=,将线段 AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)。

因为AB= AO,所以 AB=,因此的几何意义可以理解为点A)与点B1,5)之间的距离。

3)探究的几何意义

请仿照探究二(2)的方法,在图中画出图形,并写出探究过程。

4的几何意义可以理解为:_________________________.

拓展应用:

1+的几何意义可以理解为:点A与点E的距离与点AA与点F____________(填写坐标)的距离之和。

2+的最小值为____________(直接写出结果)

查看答案和解析>>

同步练习册答案