【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题。下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
探究一:求不等式的解集
(1)探究的几何意义
如图①,在以O为原点的数轴上,设点A'对应点的数为,由绝对值的定义可知,点A'与O的距离为,
可记为:A'O=。将线段A'O向右平移一个单位,得到线段AB,,此时点A对应的数为,点B的对应数是1,
因为AB= A'O,所以AB=。
因此,的几何意义可以理解为数轴上所对应的点A与1所对应的点B之间的距离AB。
(2)求方程=2的解
因为数轴上3与所对应的点与1所对应的点之间的距离都为2,所以方程的解为
(3)求不等式的解集
因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围。
请在图②的数轴上表示的解集,并写出这个解集
探究二:探究的几何意义
(1)探究的几何意义
如图③,在直角坐标系中,设点M的坐标为,过M作MP⊥x轴于P,作MQ⊥y轴于Q,则点P点坐标(),Q点坐标(),|OP|=,|OQ|=,
在Rt△OPM中,PM=OQ=y,则
因此的几何意义可以理解为点M与原点O(0,0)之间的距离OM
(2)探究的几何意义
如图④,在直角坐标系中,设点 A'的坐标为,由探究(二)(1)可知,
A'O=,将线段 A'O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)。
因为AB= A'O,所以 AB=,因此的几何意义可以理解为点A()与点B(1,5)之间的距离。
(3)探究的几何意义
请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程。
(4)的几何意义可以理解为:_________________________.
拓展应用:
(1)+的几何意义可以理解为:点A与点E的距离与点AA与点F____________(填写坐标)的距离之和。
(2)+的最小值为____________(直接写出结果)
【答案】探究一(3) 解集为:
探究二(3)()拓展应用(1)() (2)5
【解析】
试题分析:探究一(3):的解集就是数轴上所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知
探究二(3):根据题目信息,的几何意义可以理解为点A()与点B()之间的距离。
拓展应用:根据题目信息知是与点F()的距离之和。
+表示点A与点E的距离与点A与点F()的距离之和。∴最小值为E与点F()的距离5.
试题解析:探究一
(3)
解集为:
探究二(3)
如图⑤,在直角坐标系中,设点 A'的坐标为,
由探究(二)(1)可知, A'O=,
将线段 A'O先向左平移3个单位,再向下平移4个单位,
得到线段AB,此时A的坐标为(),点B的坐标为()。
因为AB= A'O,所以 AB=,
因此的几何意义可以理解为点A()与点B()之间的距离。
拓展应用
(1)() (2)5
科目:初中数学 来源: 题型:
【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)求扇形统计图中,网络文明部分对应的圆心角的度数;
(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:
根据以上提供的信息,解答下列问题:
(1)______,______,______;
(2)补全上面的条形统计图;
(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com