精英家教网 > 初中数学 > 题目详情

【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题。下面我们来探究由数思形,以形助数的方法在解决代数问题中的应用.

探究一:求不等式的解集

1)探究的几何意义

如图,在以O为原点的数轴上,设点A'对应点的数为,由绝对值的定义可知,点A'与O的距离为

可记为:AO=。将线段AO向右平移一个单位,得到线段AB,,此时点A对应的数为,点B的对应数是1

因为AB= AO,所以AB=

因此,的几何意义可以理解为数轴上所对应的点A1所对应的点B之间的距离AB

2)求方程=2的解

因为数轴上3所对应的点与1所对应的点之间的距离都为2,所以方程的解为

3)求不等式的解集

因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围。

请在图的数轴上表示的解集,并写出这个解集

探究二:探究的几何意义

1)探究的几何意义

如图,在直角坐标系中,设点M的坐标为,过MMPx轴于P,作MQy轴于Q,则点P点坐标(),Q点坐标(),|OP|=|OQ|=

RtOPM中,PMOQy,则

因此的几何意义可以理解为点M与原点O0,0)之间的距离OM

2)探究的几何意义

如图,在直角坐标系中,设点 A'的坐标为,由探究(二)(1)可知,

AO=,将线段 AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)。

因为AB= AO,所以 AB=,因此的几何意义可以理解为点A)与点B1,5)之间的距离。

3)探究的几何意义

请仿照探究二(2)的方法,在图中画出图形,并写出探究过程。

4的几何意义可以理解为:_________________________.

拓展应用:

1+的几何意义可以理解为:点A与点E的距离与点AA与点F____________(填写坐标)的距离之和。

2+的最小值为____________(直接写出结果)

【答案】探究一(3 解集为:

探究二(3)()拓展应用(1)( 25

【解析】

试题分析:探究一(3):的解集就是数轴上所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知

探究二(3):根据题目信息,的几何意义可以理解为点A)与点B)之间的距离。

拓展应用:根据题目信息知是与点F)的距离之和。

+表示点A与点E的距离与点A与点F)的距离之和。最小值为E与点F)的距离5.

试题解析:探究一

3

解集为:

探究二(3

如图,在直角坐标系中,设点 A'的坐标为

由探究(二)(1)可知, AO=

将线段 AO先向左平移3个单位,再向下平移4个单位,

得到线段AB,此时A的坐标为(),点B的坐标为()。

因为AB= AO,所以 AB=

因此的几何意义可以理解为点A)与点B)之间的距离。

拓展应用

1)( 25

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)求该班的人数;

(2)请把折线统计图补充完整;

(3)求扇形统计图中,网络文明部分对应的圆心角的度数;

(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】比﹣13的数是(

A.4B.2C.2D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:

根据以上提供的信息,解答下列问题:

(1)______,______,______;

(2)补全上面的条形统计图;

(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2016=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC.

(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列一组是按规律排列的数:1,2,4,8,16,…,第2016个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,边AB、AC的垂直平分线分别交边BC于点D、E,若∠DAE=40°,则∠BAC的度数为________________.

查看答案和解析>>

同步练习册答案