【题目】已知抛物线y=ax2+bx+c的图象如图所示,根据图象解答下列问题:
(1)抛物线与x轴的另一个交点坐标; ;
(2)方程ax2+bx+c=0的两个根是 ;
(3)不等式ax2+bx+c<0的解是 ;
(4)y随x的增大而减小的自变量x的取值范围是 ;
(5)求出抛物线的解析式及顶点坐标.
【答案】(1)(3,0);(2)x=﹣1或x=3;(3)﹣1<x<3;(4)x=1;(5)(1,﹣4);
【解析】
(1)观察图象可知抛物线的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),根据抛物线的对称性即可求得抛物线与x轴的另一个交点坐标;(2)根据抛物线与x轴的两个交点坐标为(3,0)(﹣1,0),即可求得方程ax2+bx+c=0的两个根是x=﹣1或x=3;(3)已知抛物线与x轴的两个交点坐标为(3,0)(﹣1,0),观察图象即可得不等式ax2+bx+c<0的解是﹣1<x<3;(4)观察图象即可解答;(5)利用待定系数法求得抛物线的解析式,再把解析式化为顶点式,即可求得顶点坐标.
(1)依题意得抛物线的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),
∴抛物线 与x轴的另一个交点坐标为(3,0);
(2)∵抛物线与x轴的两个交点坐标为(3,0)(﹣1,0),
∴方程ax2+bx+c=0的两个根是x=﹣1或x=3;
(3)∵抛物线与x轴的两个交点坐标为(3,0)(﹣1,0),
∴不等式ax2+bx+c<0的解是﹣1<x<3;
(4)∵抛物线的对称轴为x=1,
∴y随x的增大而减小的自变量x的取值范围是x<1;
(5)依题意得抛物线与坐标轴的三个交点坐标为(3,0),(﹣1,0),(0,﹣3),
设抛物线的解析式为y=ax2+bx+c,
把三个点的坐标代入其中得,
解之得,
∴y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点坐标为(1,﹣4).
科目:初中数学 来源: 题型:
【题目】如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在南偏西22°方向上.航行2小时后到达N处,观测灯塔P在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )
A. 22.48海里 B. 41.68海里
C. 43.16海里 D. 55.63海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,CF⊥AC交AB的延长线于点F,G为BC的中点,射线AG交CF于D,E在CF上,CE=AD,连接BD,BE.求证:△BDE是等边三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)方程x2﹣3x+2=0的解是
(2)有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A,B;②两个转盘停止后,观察两个指针所指份内的数字(若指针停在等分线上,那么重转一次,直到指针指向某一份内为止).用列表法(或树状图)分别求出“两个指针所指的数字都是方程x2﹣3x+2=0的解”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.
(1)试求证图(1)中:∠BAE=∠DEF;
(2)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;
(3)当点E在直线BD上移动时,在图(2)与图(3)中,分别猜想线段AE与EF有怎样的数量关系,并就图(3)的猜想结果说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的顶点M在第二象限,且经过点 A(1,0)和点 B(0,2).则
(1)a 的取值范围是________;
(2)若△AMO的面积为△ABO面积的倍时,则a的值为________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com