精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,EF=,点G、H分别为AB、CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为(

A. B. C. D.

【答案】B.

【解析

试题如图,过点B作BKEF交AD于K,作BMGH交CD于M,则BK=EF=,BM=GH,

线段GH与EF的夹角为45°

∴∠KBM=45°

∴∠ABK+CBM=90°-45°=45°

MBN=45°交DC的延长线于N,则CBN+CBM=45°

∴∠ABK=CBN,

ABK和CBN中,

∴△ABK≌△CBN(ASA),

BN=BK,AK=CN,

在RtABK中,AK=

过点M作MPBN于P,

∵∠MBN=45°

∴△BMP是等腰直角三角形,

设GH=BM=x,则BP=MP=BM=

tanN=

解得x=

所以GH=

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB

___A1B1

(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB___A2B2

(3)当线段AB垂直于投影面P时,它的正投影是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.

(1)求证:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABCD,点ECD上,点FGAB上,且AF=FG=BG=DE=CE。以ABCDEFG7个点中的三个为顶点的三角形中,面积最小的三角形有_________个,面积最大的三角形有__________个。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小东设计的ABCBC边上的高线的尺规作图过程.

已知:ABC

求作:ABCBC边上的高线AD

作法:如图,

①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E

②连接AEBC于点D

所以线段ADABCBC边上的高线.

根据小东设计的尺规作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:∵ =BA =CA

∴点BC分别在线段AE的垂直平分线上( )(填推理的依据).

BC垂直平分线段AE

∴线段ADABCBC边上的高线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.

(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;

(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:

本数(本)

频数(人数)

频率

合计

)统计图表中的__________,__________,__________.

)请将频数分布直方图补充完整.

求所有被调查学生课外阅读的平均本数.

)若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCDABCD,点EBC延长线上一点,连接ACAEAECD于点F,∠1=2,∠3=4

证明:

1)∠BAE=DAC

2)∠3=BAE

3ADBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°AC=6cmBC=8cmDE分别是ACAB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t0t4s.解答下列问题:

1)当t为何值时,以点EPQ为顶点的三角形与ADE相似?

2)当t为何值时,EPQ为等腰三角形?(直接写出答案即可);

查看答案和解析>>

同步练习册答案