【题目】某水果店3月份购进甲种水果50千克、乙种水果80千克,共花费1700元,其中甲种水果以15元/千克,乙种水果以20元/千克全部售出;4月份又以同样的价格购进甲种水果60千克、乙种水果40千克,共花费1200元,由于市场不景气,4月份两种水果均以3月份售价的8折全部售出.
(1)求甲、乙两种水果的进价每千克分别是多少元?
(2)请计算该水果店3月和4月甲、乙两种水果总赢利多少元?
【答案】(1)甲种水果的进价为每千克10元,乙种水果的进价为每千克15元;(2) 810元.
【解析】
(1)设甲种水果的进价为每千克x元,乙种水果的进价为每千克y元,根据“购进甲种水果50千克、乙种水果80千克,共花费1700元;购进甲种水果60千克、乙种水果40千克,共花费1200元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=每千克利润×销售数量,即可求出该水果店3月和4月销售甲、乙两种水果的总赢利.
解:(1)设甲种水果的进价为每千克x元,乙种水果的进价为每千克y元,
依题意,得:,
解得: .
答:甲种水果的进价为每千克10元,乙种水果的进价为每千克15元.
(2)50×(15﹣10)+80×(20﹣15)+60×(15×0.8﹣10)+40×(20×0.8﹣15)=810(元).
答:该水果店3月和4月甲、乙两种水果共赢利810元.
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品经销店欲购进两种纪念品,用160元购进的种纪念品与用240元购进的种纪念品的数量相同,每件种纪念品的进价比种纪念品的进价贵10元.
(1)求两种纪念品每件的进价分别为多少元?
(2)若该商店种纪念品每件售价24元,种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,问种纪念品最多购进多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数变小,方差变小B.平均数变大,方差变大
C.平均数变大,方差不变D.平均数变大,方差变小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).
(1)如图2,若与半圆相切,求的值;
(2)如图3,当与半圆有两个交点时,求线段的取值范围;
(3)若线段的长为20,直接写出此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心顺时针方向转动,转一圈为分钟.从小刚由登舱点进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点_________处(填,,或),此点距地面的高度为_______m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.
(1)当OB=2时,求点D的坐标;
(2)若点A和点D在同一个反比例函数的图象上,求OB的长;
(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com