精英家教网 > 初中数学 > 题目详情

【题目】某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心顺时针方向转动,转一圈为分钟.从小刚由登舱点进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点_________(),此点距地面的高度为_______m

【答案】C 78

【解析】

根据转一圈需要18分钟,到第12分钟时转了圈,即可确定出座舱到达了哪个位置;再利用垂径定理和特殊角的锐角三角函数求点离地面的高度即可.

∵转一圈需要18分钟,到第12分钟时转了

∴乘坐的座舱到达图2中的点C

如图,连接BC,OC,OB,OQBC于点E

由图2可知圆的半径为44m

OQBC

∴点C距地面的高度为 m

故答案为C,78

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列三农优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.

1)求wx之间的函数关系式.

2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DEBF于点O,下列结论:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正确的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BCD90°,且BCDC,直线PQ经过点D.设PDCα45°α135°),BAPQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E

1)当α125°时,ABC   °

2)求证:ACCE

3)若ABC的外心在其内部,直接写出α的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店3月份购进甲种水果50千克、乙种水果80千克,共花费1700元,其中甲种水果以15/千克,乙种水果以20/千克全部售出;4月份又以同样的价格购进甲种水果60千克、乙种水果40千克,共花费1200元,由于市场不景气,4月份两种水果均以3月份售价的8折全部售出.

1)求甲、乙两种水果的进价每千克分别是多少元?

2)请计算该水果店3月和4月甲、乙两种水果总赢利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线沿轴翻折得到抛物线.

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

时,求抛物线围成的封闭区域内(包括边界)整点的个数;

如果抛物线C1C2围成的封闭区域内(包括边界)恰有个整点,求m取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CA与⊙O相切于点A,且CABA.连接OC,过点AADOC于点E,交⊙O于点D,连接DB

1)求证:ACE≌△BAD

2)连接CB交⊙O于点M,交AD于点N.若AD4,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,DE平分∠ADB,交ABE,BF平分∠CBD,交CDF.

(1)求证:△ADE≌△CBF;

(2)当ADBD满足什么关系时,四边形DEBF是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加快智慧校园建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,今年每套型一体机的价格比每套型一体机的价格多0.6万元,且用960万元恰好能购买500型一体机和200型一体机.

1)求今年每套型、型一体机的价格各是多少万元

2)该市明年计划采购型、型一体机1100套,考虑物价因素,预计明年每套型一体机的价格比今年上涨25%,每套型一体机的价格不变,若购买型一体机的总费用不低于购买型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?

查看答案和解析>>

同步练习册答案