精英家教网 > 初中数学 > 题目详情

如图,△ABD,△BCE,△ACF均为等边三角形,请回答下列问题,其中(2),(3),(4)小题不用说明理由:
(1)四边形ADEF是什么四边形?请说明理由.
(2)当△ABC满足________条件时,四边形ADEF是菱形?
(3)当△ABC满足________条件时,四边形ADEF是矩形?
(4)当△ABC满足________条件时,以A、D、E、F为顶点的四边形不存在?

解:(1)∵△ABD,△BCE为等边三角形
∴∠DBA=∠EBC=60°,BD=AB,BE=BC
∴∠ABC+∠EBA=∠DBE+∠EBA=60°
∴∠ABC=∠DBE
∴△ABC≌△DBE
∴DE=AC 同理:EF=AB
∵AB=AD,AC=AF
∴EF=AD,DE=AF
∴四边形ADEF是平行四边形

(2)∵四边形ADEF是菱形,
∴AD=AF.
∵△ABD,△ACF均为等边三角形,
∴AB=AD,AC=AF.
∴AB=AC时,四边形ADEF是矩形.

(3)∵四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
∴∠BAC=150°时,四边形ADEF是矩形.

(4)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.
故答案为:(2)AB=AC (3)∠BAC=150° (4)∠BAC=60°
分析:(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF平行四边形.
(2)若边形ADEF是矩形,则∠DAE=90°,然后根据已知可以得到∠BAC=150°.
(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.
点评:此题主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图,∠ABD=90°,直线
AC
⊥直线
BD
,垂足为
B
,过D点有且只有
1
条直线
DB
与直线AC垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,∠ABD=∠CBD,DF∥AB,DE∥BC,则∠1与∠2的大小关系是
相等

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABD中,点C、F分别为BD、AB上一点,AC、DF交于E,且CD=2BC,AE=2CE.求
DEEF
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABD≌△ACE,那么点B与点
C
C
是对应点,点A与点
A
A
是对应点,若AB=8,BD=7,AD=3,则BE=
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABD≌△CDB,下面结论中不正确的是(  )
A、△ABD和△CDB的面积相等B、∠A+∠ABD=∠C+∠CBDC、△ABD和△CDB的周长相等D、AD∥BC,且AD=BC

查看答案和解析>>

同步练习册答案