精英家教网 > 初中数学 > 题目详情

【题目】中国科学技术馆有圆与非圆展品,涉及了等宽曲线的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是等宽曲线.除了例以外,还有一些几何图形也是等宽曲线,如勒洛只角形(1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.

下列说法中错误的是( )

A.勒洛三角形是轴对称图形

B.1中,点A上任意一点的距离都相等

C.2中,勒洛三角形上任意一点到等边三角形DEF的中心的距离都相等

D.2中,勒洛三角形的周长与圆的周长相等

【答案】C

【解析】

根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.

鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;

A上任意一点的距离都是DE,故正确;

勒洛三角形上任意一点到等边三角形DEF的中心的距离都不相等,到顶点的距离是到边的中点的距离的2倍,故错误;

鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在矩形中,上一点,点从点沿折线运动到点时停止;点从点沿运动到点时停止,速度均为每秒1个单位长度.如果点同时开始运动,设运动时间为的面积为,已知的函数图象如图2所示,有以下结论:

③当时,

④当时,是等腰三角形;

⑤当时,

其中正确的有( ).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴交于点轴交于点二次函数的图象经过两点,且与轴的负半轴交于点

求二次函数的解析式及点的坐标.

是线段上的一动点,动点在直线下方的二次函数图象上.设点的横坐标为.过点于点求线段的长关于的函数解析式,并求线段的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求对角线BD的长.

若ACBD,求证:AD=CD

(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】昆明市某中学综合实践活动棋类社团前两次购买的两种材质的围棋采购如表(近期两种材质的围棋的售价一直不变):

塑料围棋

玻璃围棋

总价(元)

第一次(盒)

第二次(盒)

1)若该社团计划再采购这两种材质的围棋各盒,则需要多少元;

2)若该社团准备购买这两种材质的围棋共盒,且要求塑料围棋的数量不多于玻璃围棋数量的倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EF分别是ADBC的中点,分别连接BEDFBD

1)求证:△AEB≌△CFD

2)若四边形EBFD是菱形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象过点,与轴交于另一点,且对称轴是直线

1)求该二次函数的解析式;

2)若上的一点,作,当面积最大时,求的长;

3轴上的点,过轴与抛物线交于,过轴于,当以为顶点的三角形与以为顶点的三角形相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y=相交于A(﹣12)、B2b)两点,与y轴相交于点C

1)求mn的值;

2)若点D与点C关于x轴对称,求△ABD的面积;

3)在坐标轴上是否存在异于D点的点P,使得SPAB=SDAB?若存在,直接写出P点坐标;若不存在,说明理由。

查看答案和解析>>

同步练习册答案