【题目】如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,
(1)求证:≌
.
(2)若DEB=90
,求证四边形DEBF是矩形.
【答案】(1)利用SAS证明;(2)证明见解析.
【解析】
试题此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AD=CB,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS).
(2)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AE=CF,∴BE=DF,
∴四边形ABCD是平行四边形,
∵∠DEB=90°,∴四边形DEBF是矩形.
故答案为(1)利用SAS证明;(2)证明见解析.
科目:初中数学 来源: 题型:
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是____________.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使,请直接写出相应的BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一副三角板和
拼合在一起,边
与
重合,
,
,
,
.当点
从点
出发沿
向下滑动时,点
同时从点
出发沿射线
向右滑动.当点
从点
滑动到点
时,连接
,则
的面积最大值为_______
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣
,0).
(1)求二次函数的最大值;
(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;
(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)
(2)(2a3b-4ab3)·(-ab)-(-2a2)2(-b2)
(3)先化简,再求代数式(a+2b)(a-2b)+(a+2b)2-4ab 的值,其中 a=1,b=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且DM=2,平行四边形ABCD的周长是14,则BC的长等于( )
A. 2B. 2.5C. 3D. 3.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知,
,其中
,
满足
,点
为第三象限内一点.
(1)若到坐标轴的距离相等,
,且
,求
点坐标
(2)若为
,请用含
的式子表示
的面积.
(3)在(2)条件下,当时,在
轴上有点
,使得
的面积是
的面积的2倍,请求出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】万州某企业捐资购买了一批重120吨的物资支援某贫困乡镇,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下(假设每辆车均满载):甲载重5吨,运费400元/车,乙载重8吨,运费500元/车,丙载重10吨,运费600元/车,该公司计划用甲、乙、丙三种车型同时参与运送并完成任务,已知它们的总辆数为15辆,要使费用最省,所使用的甲、乙、丙三种车型的辆数分别是______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:基本不等式≤
(a>0,b>0),当且仅当a=b时,等号成立.其中我们把
叫做正数a、b的算术平均数,
叫做正数a、b的几何平均数,它是解决最大(小)值问题的有力工具.
例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?
解:∵x>0,>0∴
≥
即是x+
≥2
∴x+≥2
当且仅当x=即x=1时,x+
有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若x>0,函数y=2x+,当x为何值时,函数有最小值,并求出其最小值.
(2)当x>0时,式子x2+1+≥2成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com