【题目】如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F
(1)求抛物线的解析式;
(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由.
【答案】(1)y=x 2+x﹣1;(2)EF的长度有最大值,最大值为,此时点E的坐标为(,).
【解析】
(1)求出点A的坐标,再根据待定系数法即可求出抛物线的解析式;
(2)设点E的坐标为(m,m+3),则F(m,m 2+m﹣1),可得,即可求出EF的最大值并求出点E的坐标.
(1)将y=0代入y=x+3,得x=﹣3.
∴A(﹣3,0).
∵抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,
∴,解得:
抛物线的解析式为y=x 2+x﹣1;
(2)设点E的坐标为(m,m+3),则F(m,m 2+m﹣1)
∴EF=(m+3)﹣( m 2+m﹣1)
=(m﹣) 2+,
∴当m=时,EF的长度有最大值,最大值为,此时点E的坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.
(1)求证:四边形BCFE是菱形;
(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 中,AD=6,点 E 是对角线 AC 上一点,连接 DE,过点 E 作 EF⊥ ED,交 AB 于点 F,连接 DF,交 AC 于点 G,将△EFG 沿 EF 翻折,得到△EFM,连接DM,交 EF 于点 N,若点 F 是 AB 边的中点,则 △EDM 的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象在第一象限交于A,B两点,A点的坐标为,B点的坐标为,连接,过B作轴,垂足为C.
(1)求一次函数和反比例函数的表达式;
(2)在射线上是否存在一点D,使得是直角三角形,求出所有可能的D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE,CD,F为BE的中点,连接AF.
(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=与x轴交于A,C(A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点.
(1)求直线BC的函数表达式;
(2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com