【题目】如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.
(1)求证:OE=OF;
(2)那么当点O运动到AC的中点时,试判断四边形AECF的形状并说明理由;
(3)在(2)的前提下△ABC满足什么条件,四边形AECF是正方形?说明理由.
【答案】(1)证明见解析;(2)四边形AECF是矩形;(3)四边形AECF是正方形.
【解析】
(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;
(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;
(3)当△ABC是直角三角形时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.
证明:(1)
如图:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,当∠ACB=90°,
∴∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,0),C(0,c)且满足:,长方形ABCO在坐标系中(如图1),点O为坐标系的原点.
(1)求点B的坐标.
(2)如图2,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图3,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB与△BEC全等吗?为什么?
(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.
(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人玩“石头、剪刀、布”的游戏,他们在不透明的袋子中放入形状,大小均相同的15张卡片,其中写有“石头”、“剪刀”、“布”的卡片数分别为3、5、7张,两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种卡片不分胜负.
(1)若甲先摸,则他摸出“石头”的概率是多少?
(2)若甲先摸出“石头”,则乙获胜的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的两个外角∠CBE,∠CDF的平分线交于点G,若∠A=52°,∠DGB=28°,则∠DCB的度数是( )
A. 152°B. 128°C. 108°D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上。
(1)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′,补全△A′B′C′;
(2)若连接AA′、BB′,则这两条线段之间的关系是________________;
(3)在图中画出△ABC的高CD;
(4)△A′B′C′的面积为________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴相交于点,与直线相交于点.
(1)求点的坐标;
(2)请判断的形状并说明理由;
(3)动点从原点出发,以每秒个单位的速度沿着的路线向点匀速运动(不与点、重合),过点分别作轴于,轴于,设运动秒时,矩形与重叠部分的面积为,求与之间的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com