精英家教网 > 初中数学 > 题目详情
11.观察下图,填表后再回答问题:
序号123
图形
●的个数81624
☆的个数149
(1)在表格中填入正确的数:
(2)试求第6个图形中“●”的个数和“☆”的个数?
(3)试求第n个图形中“●”的个数和“☆”的个数?

分析 (1)由图中可以看出“●”的个数为4×4=16;“★”的个数为32=9;
(2)(3)易得所有图形中“●”的个数依次为8的1倍,2倍,3倍…;“★”的个数依次为12,22,32…据此可得所求答案.

解答 解:(1)填表如下:

序号123
图形
●的个数81624
☆的个数149
(2)∵图形中“●”的个数依次为8的1倍,2倍,3倍…;“★”的个数依次为12,22,32
∴第6图形中“●”有8×6=48个,“★”有62=36个;
(3)第n图形中“●”有8n个,“★”有n2个;

点评 此题考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=-x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=$\frac{1}{2}$.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)2$\sqrt{3}$-$\root{3}{8}$-|1-2$\sqrt{3}$|
(2)$\root{3}{0.008}$×$\sqrt{1\frac{9}{16}}$-$\sqrt{81}$+$\root{3}{-\frac{1}{64}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:(1+2a-3b)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【提出问题】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
【探究发现】:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=$\frac{1}{2}$S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=$\frac{1}{2}$S△DEH
所以S△EGH+S△EFH=$\frac{1}{2}$S△EBH+$\frac{1}{2}$S△DEH
即S四边形EFHG=$\frac{1}{2}$S四边形EBH
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以S△DBE=$\frac{2}{3}$S△ABD
因为△BDH与△BCD高相等,底的比是2:3,
所以S△BDH=$\frac{2}{3}$S△BCD
所以S△DBE+S△BDH=$\frac{2}{3}$S△ABD+$\frac{2}{3}$S△BCD=$\frac{2}{3}$(S△ABD+S△BCD)=$\frac{2}{3}$S四边形ABCD
即S四边形EBHD=$\frac{2}{3}$S四边形ABCD
所以S四边形EFHG=$\frac{1}{2}$S四边形EBHD=$\frac{1}{2}$×$\frac{2}{3}$S四边形ABCD=$\frac{1}{3}$S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢S四边形EFHG=$\frac{1}{5}$S四边形ABCD,验证你的猜想:
【问题解决】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)那么S四边形EFHG与S四边形ABCD之间的关系为:S四边形EFHG=$\frac{1}{n}$S四边形ABCD(不必写出求解过程)
【问题拓展】仿照上面的探究思路,若n为奇数,请再给出一个一般性结论.(画出图形,不必写出求解过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,

(1)第1个图中所贴剪纸“○”的个数为5,第2个图中所贴剪纸“○”的个数为8,第3个图中所贴剪纸“○”的个数为11;
(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,八条直线相交最多有28个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.以AC=6为直径画一个圆,过点A作AP⊥AC,过点C作CB∥OP,直线PB与直线AC相交于点D.
(1)求证:PD为圆O的切线;
(2)已知PA=$\frac{1}{2}BD$=4,求BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在直角坐标系中,点O为坐标原点,把抛物线y=-x2先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到的新抛物线顶点为P,新抛物线与x轴交于A、B两点(其中点A在点B的左侧),交于y轴负半轴交于C点.
(1)若n=2,△ABC的面积为2$\sqrt{2}$,求m的值.
(2)若点B的横坐标为m+1,点P关于x轴的对称点Q在直线BC上,直线BC的上方的新抛物线上是否存在点M,使△MBC与△PBC的面积相等?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案