精英家教网 > 初中数学 > 题目详情

【题目】如图在平面直角坐标系中反比例函数y的图象经过点P(43)和点B(mn)(其中0m4),作BAx轴于点A,连接PAOB,过PB两点作直线PB,且SAOBSPAB

(1)求反比例函数的解析式;

(2)求点B的坐标.

【答案】1y;(2B26).

【解析】

1)直接把P点坐标代入y可求出k的值;

2)利用三角形面积公式可判断点O和点PAB的距离都是2,然后计算自变量为2对应的反比例函数值即可得到当B点坐标.

1)把P43)代入yk4×312

∴反比例函数解析式为y

2)∵SAOBSPAB

P点到AB的距离等于OA

P点到y轴的距离为4ABx轴,

∴点O和点PAB的距离都是2

B点的横坐标为2

x2时,y6

B26).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程skm)与行驶时间th)的函数图象如图所示.

1)两地相距   千米,当货车司机拿到清单时,距出发地   千米.

2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠A=60°AB=6厘米,BC=12厘米,点PQ同时从 顶点A出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,PQ经过的路径与线段PQ围成的图形的面积为ycm2),则yx的函数图象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB的直径,PBA延长线上的一点,D上(不与点A,点B重合),连结PD于点C,且PC=OB.设,下列说法正确的是(

A. ,则

B. ,则

C. ,则

D. ,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如下图,则以下结论:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有两个相等的实数根.其中正确结论的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①,②的 统计图,已知查资料的人数是 40人.请你根据以上信息解答下列问题:

(1)在扇形统计图中,玩游戏对应的百分比为______,圆心角度数是______度;

(2)补全条形统计图;

(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某区2018年初中毕业生毕业后的去向,某区教育部门对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中;C,直接进入社会就业;D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:

(1)此次共调查了多少名初中毕业生?

(2)将两幅统计图中不完整的部分补充完整;

(3)若某区2018年初三毕业生共有3500人,请估计2019年初三毕业生中读普通高中的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x1的抛物线经过A(﹣10)、C03)两点,与x轴的另一个交点为B,点Dy轴上,且OB3OD

1)求该抛物线的表达式;

2)设该抛物线上的一个动点P的横坐标为t

①当0t3时,求四边形CDBP的面积St的函数关系式,并求出S的最大值;

②点Q在直线BC上,若以CD为边,点CDQP为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.

查看答案和解析>>

同步练习册答案