【题目】为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(km)与行驶时间t(h)的函数图象如图所示.
(1)两地相距 千米,当货车司机拿到清单时,距出发地 千米.
(2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?
【答案】(1)172;40;(2)中午12点时,货车离贫困村还有60千米.
【解析】
(1)依据函数图象中y的最大值可得到两地的距离,用80减去从2小时到2.8小时的路程即可;
(2)先求得BC段的速度,然后计算出距离贫困村的距离即可.
解:(1)当t=5时,y=172km,
所以两地相距172km.
80﹣50×(2.8﹣2)=80﹣40=40km,
所以货车司机拿到清单时,距出发地40千米.
故答案为:172;40.
(2)设直线BC的解析式为y=kx+b,
∵B(2.8,40),C(5,172),
∴,
解得,
∴直线BC 的解析式为y=60x﹣128.
(172﹣40)÷(5﹣2.8)=60千米/小时.
60×1=60,
所以中午12点时,货车离贫困村还有60千米
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.
(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有( )
(1)A、O、B、C四点共圆
(2)AC=BC
(3)cos∠1=
(4)S四边形AOBC=
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A、B两点与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,抛物线顶点D的坐标为 ,OE= ;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,当β从30°增加到60°的过程中,点D运动的路径长;
(4)以DE为斜边,在直线DE的右上方作等腰Rt△PDE.设P(m,n),请直接写出n关于m的函数解析式及自变量m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )
A. 4 B. 6 C. 8 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系中反比例函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA、OB,过P、B两点作直线PB,且S△AOB=S△PAB
(1)求反比例函数的解析式;
(2)求点B的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com