如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为( )
![]()
A.
B.
C.
D.
D.
【解析】
试题分析:∵A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,
∴A1(1,0),
A2(2,0),
A3(3,0),
…
An(n,0),
An+1(n+1,0),
∵分别过点A1、A2、A3、…、An、An+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,
∴B1的横坐标为:1,纵坐标为:2,
则B1(1,2),
同理可得:B2的横坐标为:2,纵坐标为:4,
则B2(2,4),
B3(2,6),
…
Bn(n,2n),
Bn+1(n+1,2n+2),
根据题意知:P n是AnBn+1与 BnAn+1的交点,
设:直线AnBn+1的解析式为:y=k1x+b1,
直线BnAn+1的解析式为:y=k2x+b2,
∵An(n,0),An+1(n+1,0),Bn(n,2n),Bn+1(n+1,2n+2),
∴直线AnBn+1的解析式为:y=(2n+2)x﹣2n2﹣2n,
直线BnAn+1的解析式为:y=﹣2n x+2n2+2n,
∴P n(
,
)
∴△AnBnPn的AnBn边上的高为:
=
,
△AnBnPn的面积Sn为:
.
故选D.
考点:一次函数图象上点的坐标特征.
科目:初中数学 来源:2014年初中毕业升学考试(四川德阳卷)数学(解析版) 题型:选择题
如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是( )
![]()
A.7、8 B.7、9 C.8、9 D.8、10
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川南充卷)数学(解析版) 题型:填空题
一组数据按从小到大的顺序排列为1,2,3,
,4,5,若这组数据的中位数为3,则这组数据的方差是__________.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川内江卷)数学(解析版) 题型:填空题
已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是 .
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川内江卷)数学(解析版) 题型:选择题
如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( )
![]()
A.
B.3 C.2
D.4
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(吉林卷)数学(解析版) 题型:解答题
如图①,直线l:y=mx+n(m>0,n<0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=﹣2x+2,则P表示的函数解析式为 ;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为 .
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=
,直接写出l,P表示的函数解析式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com