分析 (1)设渠道深x米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;
(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.
解答 解:(1)设渠道深x米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据题意得:
$\frac{1}{2}$[(x+2)+(x+0.4)]x=1.6,
解得:x1=-2(舍去),x2=0.8,
则渠道的上口宽是:0.8+2=2.8(米),
渠底宽是0.8+0.4=1.2(米);
答:渠道的上口与渠底宽各是2.8米和1.2米.
(2)∵渠道的长为750米,
∴渠道的体积为750×1.6=1200(立方米),
∵每天挖土48立方米,
∴需要的天数是:1200÷48=25(天),
答:需要25天才能把这条渠道的土挖完.
点评 此题考查了一元二次方程的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出方程,用到的知识点是梯形的面积公式、棱柱的体积公式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com