【题目】如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从A. C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0<t<8).
(1)如图1,连接PE、EQ、QF、PF,求证:无论t在0<t<8内取任何值,四边形PEQF总为平行四边形;
(2)如图2,连接PQ交CE于G,若PG=4QG,求t的值;
(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由
【答案】(1)见解析;(2);(3)不存在,理由见解析.
【解析】
(1)由矩形的性质得出CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,由SAS证明△APE≌△CQF,得出PE=QF,同理:PF=QE,即可得出结论;
(2)根据题意得:AP=CQ=t,∴PD=QB=8-t,作EF∥BC交CD于E,交PQ于H,证出EH是梯形ABQP的中位线,由梯形中位线定理得出EH= (AP+BQ)=4,证出GH:GQ=3:2,由平行线得出△EGH∽△CGQ,得出对应边成比例 ,即可得出t的值;
(3)由勾股定理求出CE= =10,作EM∥BC交PQ于M,由(2)得:ME=4,证出△GCQ∽△BCE,得出对应边成比例求出CG=t,得出EG=10- t,由平行线证明△GME∽△GQC,得出对应边成比例,求出t=0或t=8.5,即可得出结论.
(1)证明:∵四边形ABCD是矩形,
∴CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,
∵E、F分别为AB、CD的中点,
∴AE=BE=6,DF=CF=6,
∴AE=BE=DF=CF,
∵点P、Q从A. C同时出发,在边AD、CB上以每秒1个单位向D、B运动,
∴AP=CQ=t,
在△APE和△CQF中, ,
∴△APE≌△CQF(SAS),
∴PE=QF,
同理:PF=QE,
∴四边形PEQF总为平行四边形;
(2)根据题意得:AP=CQ=t,
∴PD=QB=8t,
作EF∥BC交CD于E,交PQ于H,如图2所示:
则F为CD的中点,H为PQ的中点,EF=BC=8,
∴EH是梯形ABQP的中位线,
∴EH= (AP+BQ)=4,
∵PG=4QG,
∴GH:GQ=3:2,
∵EF∥BC,
∴△EGH∽△CGQ,
∴ = ,即4t=,
解得:t=,
∴若PG=4QG,t的为 值;
(3)不存在,理由如下:
∵∠B=90°,BE=6,BC=8,
∴CE= =10,
作EM∥BC交PQ于M,如图3所示:
由(2)得:ME=4,
∵PQ⊥CE,
∴∠CGQ=90°=∠B,
∵∠GCQ=∠BCE,
∴△GCQ∽△BCE,
∴ ,即=,
∴CG=t,
∴EG=10t,
∵EM∥BC,
∴△GME∽△GQC,
∴ ,即 ,
解得:t=0或t=8.5,
∵0<t<8,
∴不存在。
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数y=kx+3的图象与反比例函数y= (x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B. 一次函数的图象分别交x轴、y轴于点C. 点D,且S△DBP=27,
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x﹣2与反比例函数y=的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;
(3)坐标原点为O,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,是假命题的是( )
A. 过边形一个顶点的所有对角线,将这个多边形分成个三角形
B. 三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
C. 三角形的中线将三角形分成面积相等的两部分
D. 一组对边平行另一组对边相等的四边形是平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四边形AFCE的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于a的方程的解也是关于x的方程=11的解.
(1)求a、b的值;
(2)若线段AB=a,在直线AB上取一点P,恰好使,点Q为AP的中点,求线段BQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
()求证:四边形DEFG是平行四边形.
()如果, , ,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com