【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四边形AFCE的面积为
科目:初中数学 来源: 题型:
【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC相切于点D,与AC相交于点E,与AB相交于点F,连接AD.
(1)求证:AD平分∠BAC;
(2)若点E为弧AD的中点,探究线段BD,CD之间的数量关系,并证明你的结论;
(3)若点E为弧AD的中点,CD=,求弧DF与线段BD,BF所围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.
(1)当QD=QC时,求∠ABP的正切值;
(2)设AP=x,CQ=y,求y关于x的函数解析式;
(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从A. C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0<t<8).
(1)如图1,连接PE、EQ、QF、PF,求证:无论t在0<t<8内取任何值,四边形PEQF总为平行四边形;
(2)如图2,连接PQ交CE于G,若PG=4QG,求t的值;
(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知数轴上三点对应的数分别为、3、5,点为数轴上任意一点,其对应的数为.点与点之间的距离表示为,点与点之间的距离表示为.
(1)若,则 ;
(2)若,求的值;
(3)若点从点出发,以每秒3个单位的速度向右运动,点以每秒1个单位的速度向左运动,点以每秒2个单位的速度向右运动,三点同时出发.设运动时间为秒,试判断:的值是否会随着的变化而变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,则 α 与 β 之间的数量关系为( )
A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有三个角相等的四边形叫做三等角四边形.
(1)在三等角四边形中,,则的取值范围为________.
(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;
(3)如图②,三等角四边形中,,若,,,则 的长度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( )
A. 4 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:y=y1﹣y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时y=1.
(1)求y关于x的函数关系式.
(2)求x=﹣时,y的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com