【题目】如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.
(1)当QD=QC时,求∠ABP的正切值;
(2)设AP=x,CQ=y,求y关于x的函数解析式;
(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.
【答案】(1) ;(2) (0<x<2);(3)见解析
【解析】试题分析:(1)延长PQ交BC延长线于点E.设PD=x,由∠PBC=∠BPQ可得EB=EP,再根据AD//BC,QD=QC可得PD=CE,PQ=QE,从而得BE=EP= x+2, QP=,在Rt△PDQ中,根据勾股定理可得,从而求得的长,再根据正切的定义即可求得;
(2)过点B作BH⊥PQ,垂足为点H,联结BQ,通过证明Rt△PAB Rt△PHB,得到AP = PH =x,通过证明Rt△BHQ Rt△BCQ,得到QH = QC= y,在Rt△PDQ中,根据 勾股定理可得PD2+QD2=PQ2,代入即可求得;
(3)存在,根据(2)中的两对全等三角形即可得.
试题解析:(1)延长PQ交BC延长线于点E,设PD=x,
∵∠PBC=∠BPQ,
∴EB=EP,
∵四边形ABCD是正方形,
∴AD//BC,∴PD∶CE= QD∶QC= PQ∶QE,
∵QD=QC,∴PD=CE,PQ=QE,
∴BE=EP= x+2,∴QP=,
在Rt△PDQ中,∵,∴,解得,
∴,∴;
(2)过点B作BH⊥PQ,垂足为点H,联结BQ,
∵AD//BC,∴∠CBP=∠APB,∵∠PBC=∠BPQ,∴∠APB=∠HPB,
∵∠A=∠PHB=90°,∴BH = AB =2,∵PB = PB,∴Rt△PAB Rt△PHB,
∴AP = PH =x,
∵BC = BH=2,BQ = BQ,∠C=∠BHQ=90°,
∴Rt△BHQ Rt△BCQ,∴QH = QC= y,
在Rt△PDQ中,∵,∴,
∴;
(3)存在,∠PBQ=45°.
由(2)可得, , ,
∴.
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.
(1)四边形ADEF为__________四边形;
(2)当△ABC满足条件____________时,四边形ADEF为矩形;
(3)当△ABC满足条件____________时,四边形ADEF为菱形;
(4)当△ABC满足条件____________时,四边形ADEF不存在.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数为常数,且).
(1)若在其图像的每个分支上,随的增大而增大,求的取值范围.
(2)若其图象与一次函数y=x+1图象的一个交点的纵坐标是3,求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数y=kx+3的图象与反比例函数y= (x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B. 一次函数的图象分别交x轴、y轴于点C. 点D,且S△DBP=27,
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x﹣2与反比例函数y=的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;
(3)坐标原点为O,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四边形AFCE的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板:
(1)观察图形,填写下表:
图形 | (1) | (2) | (3) | …… |
黑色瓷砖的块数 | 4 | …… | ||
黑白两种瓷砖的总块数 | 15 | …… |
(2)依上推测,第n个图形中黑色瓷砖的块数为__________________;黑白两种瓷砖的总块数为__________________(都用含n的代数式表示)
(3)白色瓷砖的块数可能比黑色瓷砖的块数多2014块吗?若能,求出是第几个图形;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com