【题目】如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,即AO2=ODOP.∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OEOP,故②错误;
在△CQF与△BPE中,,∴△CQF≌△BPE,∴CF=BE,∴DF=CE.在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF,故③正确;
∵BP=1,AB=3,∴AP=4.∵△PBE∽△PAD,∴==,∴BE=,∴QE=.∵∠QOE=∠POA,∠P=∠Q,∴△QOE∽△POA,∴===,即tan∠OAE=,故④错误.
故选B.
科目:初中数学 来源: 题型:
【题目】观察下表:
我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为 4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:
(1)第 3 格的“特征多项式”为 第 4 格的“待征多项式”为 , 第 n 格的“特征多项式”为 .
(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开展以“我最喜爱的传统文化”为主题的调查活动,从“诗词、国画、对联、书法、戏曲”五种传统文化中,选取喜欢的一种(只选一种)进行调查,将调查结果整理后绘制成如图所示的不完整统计图.
(1)本次调查共抽取了多少名学生?
(2)喜欢“书法”的有多少名学生?并补全条形统计图;
(3)求喜欢“国画”对应扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作思考:如图1,在平面直角坐标系中,等腰的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点处则的长为______;点B的坐标为______直接写结果
感悟应用:如图2,在平面直角坐标系中,将等腰如图放置,直角顶点,点,试求直线AB的函数表达式.
拓展研究:如图3,在直角坐标系中,点,过点B作轴,垂足为点A,作轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点问是否存在以点P为直角顶点的等腰,若存在,请求出此时P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 中,点 ,点 分别在 轴, 轴上, 为边 上的一动点,现把 沿 对折, 点落在点 处.已知点 的坐标为 .
(1) 当 点坐标为 时,求 点的坐标;
(2) 在点 沿 从点 运动至点 的过程中,设点 经过的路径长度为 ,求 的值;
(3) 在点 沿 从点 运动至点 的过程中,若点 落在同一条直线 上的次数为 次,请直接写出 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是 ;
(2)已知a+b=5(a﹣b),代数式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC于点D,E,且AE平分∠BAC.
(1)求∠C的度数;
(2)若CE=1,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.
(2)如图,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.
(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com