精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=﹣ x2 x+2与x轴交于A、B两点,与y轴交于点C

(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

【答案】
(1)解:令y=0得﹣ x2 x+2=0,

∴x2+2x﹣8=0,

x=﹣4或2,

∴点A坐标(2,0),点B坐标(﹣4,0),

令x=0,得y=2,∴点C坐标(0,2)


(2)解:①由图象AB为平行四边形的边时,

∵AB=EF=6,对称轴x=﹣1,

∴点E的横坐标为﹣7或5,

∴点E坐标(﹣7,﹣ )或(5,﹣ ),此时点F(﹣1,﹣ ),

∴以A,B,E,F为顶点的平行四边形的面积=6× =

②当点E在抛物线顶点时,点E(﹣1, ),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积= ×6× =


(3)解:如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,

在RT△CM1N中,CN= =

∴点M1坐标(﹣1,2+ ),点M2坐标(﹣1,2﹣ ).

②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,

∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),

∴点M3坐标为(﹣1,﹣1).

③当点A为等腰三角形的顶角的顶点的三角形不存在.

综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).


【解析】(1)根据抛物线与x轴交于A、B两点,与y轴交于点C,得到点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,得到点C坐标(0,2);(2)①由图象AB为平行四边形的边时,AB=EF=6,对称轴x=﹣1,得到点E的横坐标为﹣7或5,求出点F的坐标,以A,B,E,F为顶点的平行四边形的面积=6× =;②当点E在抛物线顶点时,点E(﹣1, ),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积= ×6× =;(3)①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN=,所以点M1坐标(﹣1,2+ ),点M2坐标(﹣1,2﹣);②当M3为等腰三角形的顶角的顶点时,因为直线AC解析式为y=﹣x+2,得到线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),点M3坐标为(﹣1,﹣1);③当点A为等腰三角形的顶角的顶点的三角形不存在;综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).

【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=BC,BEAC于点E,ADBC于点D,BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;

(2)若CD=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了招聘一名优秀教师对入选的三名候选人进行教学技能与专业知识两种考核现将甲丙三人的考核成绩统计如下

(1)如果校方认为教师的教学技能水平与专业知识水平同等重要那么候选人    将被录取

(2)如果校方认为教师的教学技能水平比专业知识水平重要并分别赋予它们64的权计算他们赋权后各自的平均成绩并说明谁将被录取

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,定点A(21),点B在直线yx上,且横坐标为2,动点Px轴上运动,当线段PAPB最短时,点P的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的快速发展,互联网+渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:

收费方式

月使用费/元

包时上网时间/h

超时费/(元/min)

A

7

25

0.01

B

m

n

0.01

设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB

(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=

(2)写出yA与x之间的函数关系式.

(3)选择哪种方式上网学习合算,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )

A.44°
B.66°
C.88°
D.92°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6,AB=4,点E,G,H,F分别在AB,BC,CD,AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE,PF,PG,PH,则△PEF和△PGH的面积和等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.

(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为

查看答案和解析>>

同步练习册答案