精英家教网 > 初中数学 > 题目详情

【题目】如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.

(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

【答案】
(1)

解:sin∠BAC=

∴BC=AB×sin32°

=16.50×0.5299≈8.74米


(2)

解:∵tan32°=

∴级高=级宽×tan32°=0.25×0.6249=0.156225

∵10秒钟电梯上升了20级,

∴小明上升的高度为:20×0.156225≈3.12米


【解析】(1)在直角三角形ABC中利用∠BAC的正弦值和AB的长求得BC的长即可;(2)首先根据题意求得级高,然后根据10秒钟上升的级数求小明上升的高度即可.
【考点精析】认真审题,首先需要了解关于坡度坡角问题(坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知某个图形是按下面方法连接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).

(1)请连接图案,它是一个什么汉字?

(2)作出这个图案关于y轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣ x2 x+2与x轴交于A、B两点,与y轴交于点C

(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC,AD=BD=BC.在BC延长线上取点C1,连接DC1,使DC=CC1,在CC1延长线上取点C2,在DC1上取点E,使EC1=C1C2,同理FC2=C2C3,若继续如此下去直到Cn,则∠Cn的度数为____(结果用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下面各题
(1)计算:﹣22+ ﹣2cos60°+|﹣3|;
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,ABCD将点PABCD内部,∠B,∠D,∠P满足的数量关系是   并说明理由

(2)在图1将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图2,利用(1)中的结论(可以直接套用),求∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?

(3)科技活动课上雨轩同学制作了一个图(3)的“飞旋镖”经测量发现∠PAC=30°,∠PBC=35°,他很想知道∠APB与∠ACB的数量关系你能告诉他吗?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P与点A重合时停止运动,运动时间为t秒.

(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;

(2)连接PC,求CPD的面积S关于t的函数表达式;

(3)点P在运动过程中,是否存在某个位置使得CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车制造厂开发了一款新式自行车计划6月份生产安装600由于抽调不出足够的熟练工来完成新式自行车的安装工厂决定招聘一些新工人他们经过培训后也能独立进行安装.调研部门发现:1名热练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车

(1)每名熟练工和新工人每日分别可以安装多少辆自行车?

(2)如果工厂招聘n名新工人(0<n<10).使得招聘的新工人和抽调熟练工刚好能完成6月份(30的安装任务那么工厂有哪几种新工人的招聘方案?

(3)该自行车关于轮胎的使用有以下说明本轮胎如安装在前轮安全行使路程为11千公里如安装在后轮安全行使路程为9千公里.请问一对轮胎能行使的最长路程是多少千公里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为a厘米的正方形的四个角各剪去一个边长为b厘米的小正方形.

(1)用代数式表示剩余部分的面积;

(2)当a=8.68,b=0.66时,求剩余部分的面积.

查看答案和解析>>

同步练习册答案