18£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Õý±ÈÀýº¯Êýy=xºÍ·´±ÈÀýº¯Êýy=$\frac{9}{x}$µÄͼÏó½»ÓÚµÚÒ»ÏóÏÞÄÚµãA
£¨1£©ÇóµãAµÄ×ø±ê£»
£¨2£©°ÑÖ±ÏßOAÏòÏÂÆ½ÒÆm¸öµ¥Î»ºóÓë·´±ÈÀýº¯Êýy=$\frac{9}{x}$µÄͼÏó½»ÓÚµãB£¨6£¬n£©£¬ÇómµÄÖµºÍÕâ¸öÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©ÈôµÚ£¨2£©ÎÊÖÐÆ½ÒƺóµÄÒ»´Îº¯ÊýµÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC¡¢DÁ½µã£¬¹ýA¡¢B¡¢DÈýµãµÄ¶þ´Îº¯ÊýÔÚµÚÒ»ÏóÏÞµÄͼÏóÉÏÓÐÒ»µãE£¬ÇÒ¡÷OECµÄÃæ»ýΪ$\frac{27}{8}$£¬ÇóµãEµÄ×ø±ê£®

·ÖÎö £¨1£©Éè³öÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬Óôý¶¨ÏµÊý·¨½â´ð£»
£¨2£©ÒòΪBµãΪÈý¸öº¯ÊýµÄ½»µã£¬½«B£¨6£¬m£©´úÈëÒÑÖªº¯Êýy=$\frac{9}{x}$£¬¼´¿ÉÇóµÃmµÄÖµ£»¸ù¾ÝÒ»´Îº¯ÊýºÍÕý±ÈÀýº¯ÊýƽÐУ¬¿ÉÖª¶þÕß±ÈÀýϵÊýÏàͬ£¬ÔÙÓôý¶¨ÏµÊý·¨Çó³öbµÄÖµ£»
£¨3£©A¡¢B×ø±êÒÑÇó³ö£¬Dµã×ø±ê¿É¸ù¾ÝÒ»´Îº¯Êý½âÎöʽÇóµÃ£»»­³öͼÐΣ¬ÉèEµã×Ý×ø±êΪh£¬´úÈë¶þ´Îº¯Êý½âÎöʽÇó³öEµãºá×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©ÉèÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪy=k1x£¨k1¡Ù0£©£¬
ÒòΪy=k1xµÄͼÏó¹ýµãA£¨3£¬3£©£¬
ËùÒÔ3=3k1£¬½âµÃk1=1£®
Õâ¸öÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪy=x£®
Éè·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{{k}^{2}}{x}$£¨k2¡Ù0£©£¬
ÒòΪy=$\frac{{k}^{2}}{x}$ µÄͼÏó¹ýµãA£¨3£¬3£©£¬
ËùÒÔ3=$\frac{{k}^{2}}{3}$£¬
½âµÃk2=9£®
Õâ¸ö·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{9}{x}$£®

£¨2£©ÒòΪµãB£¨6£¬n£©ÔÚy=$\frac{9}{x}$µÄͼÏóÉÏ£¬
ËùÒÔn=$\frac{9}{6}$=$\frac{3}{2}$£¬
ÔòµãB£¨6£¬$\frac{3}{2}$£©£®
ÉèÒ»´Îº¯Êý½âÎöʽΪy=k3x+b£¨k3¡Ù0£©£¬
ÒòΪy=k3x+bµÄͼÏóÊÇÓÉy=xÆ½ÒÆµÃµ½µÄ£¬
ËùÒÔk3=1£¬¼´y=x+b£®
ÓÖÒòΪy=x+bµÄͼÏó¹ýµãB£¨6£¬$\frac{3}{2}$ £©£¬
ËùÒÔ$\frac{3}{2}$=6+b£¬
½âµÃb=-$\frac{9}{2}$£¬
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=x-$\frac{9}{2}$£®

£¨3£©Èçͼ£¬ÒòΪy=x-$\frac{9}{2}$µÄͼÏó½»yÖáÓÚµãD£¬
ËùÒÔDµÄ×ø±êΪ£¨0£¬-$\frac{9}{2}$£©£®
Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¨a¡Ù0£©£®
ÒòΪy=ax2+bx+cµÄͼÏó¹ýµãA£¨3£¬3£©¡¢B£¨6£¬$\frac{3}{2}$£©¡¢ºÍD£¨0£¬-$\frac{9}{2}$£©£¬
ËùÒÔ$\left\{\begin{array}{l}9a+3b+c=3\\ 36+6b+c=\frac{3}{2}\\ c=-\frac{9}{2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=-\frac{1}{2}\\ b=4\\ c=-\frac{9}{2}\end{array}\right.$£¬
Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-$\frac{1}{2}$x2+4x-$\frac{9}{2}$£®
¡ßy=x-$\frac{9}{2}$½»xÖáÓÚµãC£¬
¡àµãCµÄ×ø±êÊÇ£¨$\frac{9}{2}$£¬0£©£¬
ÉèEµã×Ý×ø±êΪh£¬
Ôò$\frac{1}{2}$¡Á$\frac{9}{2}$h=$\frac{27}{8}$£¬
½âµÃh=$\frac{3}{2}$£¬
µ±y=$\frac{3}{2}$ʱ£¬-$\frac{1}{2}$x2+4x-$\frac{9}{2}$=$\frac{3}{2}$£¬
ÕûÀíµÃ£¬x2-8x+12=0£¬
½âµÃ£¬£¨x-2£©£¨x-6£©=0£¬
x1=2£¬x2=6£¬
¡àEµã×ø±êΪ£¨2£¬$\frac{3}{2}$£©£¬£¨6£¬$\frac{3}{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣬½«³õÖÐËùѧÈý¸öÖ÷Òªº¯Êý£ºÒ»´Îº¯Êý£¨º¬Õý±ÈÀýº¯Êý£©¡¢·´±ÈÀýº¯Êý¡¢¶þ´Îº¯Êý½áºÏÆðÀ´£¬¿¼²éÁËÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢º¯ÊýÓë×ø±êµÄ¹ØÏµ¼°²»¹æÔòͼÐÎÃæ»ýµÄÇ󷨣¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖª¡ÑOÊǵȱßÈý½ÇÐÎABCÖ½°åµÄÄÚÇÐÔ²£¬²¢¸ø¡ÑOÍ¿ÉϺÚÉ«£¬½«Õâ¿éÈý½ÇÐÎÖ½°å×÷Ϊ°Ð×Ó£¬Íæ·ÉïÚÓÎÏ·£¨Éèÿ´Î·ÉïÚ¾ùÄÜÂäÔÚÈý½ÇÐÎÖ½°åÄÚ£¬ÇÒÂäÔÚÈÎÒâÒ»µãµÄ»ú»á¶¼Ïàͬ£©£®ÎÊ£º·ÉïÚÂäÔÚºÚÉ«ÇøÓòµÄ¸ÅÂʴ󣬻¹ÊÇÂäÔÚ°×É«ÇøÓò´ó£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®»¯¼ò£º$\frac{1+\sqrt{2-\sqrt{2}}+\sqrt{2-\sqrt{3}}}{\sqrt{3}+\sqrt{2+\sqrt{2}}+\sqrt{2+\sqrt{3}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ËıßÐÎABCDÖУ¬¡ÏD=¡ÏB=90¡ã£¬¡ÏAEC=¡ÏBAD£¬ÇóÖ¤£ºAE¡ÎDC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Å×ÎïÏßy=ax2+bx+cÓëy=2x2-4x+1µÄÐÎ×´Ïàͬ£¬¿ª¿Ú·½ÏòÏà·´£¬¶¥µãΪ£¨1£¬3£©£¬Çó¸ÃÅ×ÎïÏߵĹØÏµÊ½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÔϲ»Äܹ¹³ÉÈý½ÇÐα߳¤µÄÊý×éÊÇ£¨¡¡¡¡£©
A£®1£¬$\sqrt{5}$£¬2B£®$\sqrt{3}$£¬$\sqrt{4}$£¬$\sqrt{5}$C£®3£¬4£¬5D£®32£¬42£¬52

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼×£¬ÒÒÁ½¸öСÉÌ··Ã¿´Î¶¼È¥Í¬Ò»Åú·¢É̳ÇÂò°×ÌÇ£¬Á½ÈËͬһÅú´Î¹ºÂòµÄ°×ÌǼ۸ñÏàͬ£¬¼×½ø»õµÄ²ßÂÔÊÇÿ´ÎÂò1000ԪǮµÄ°×ÌÇ£¬ÒÒ½ø»õµÄ²ßÂÔÊÇÿ´ÎÂò1000ǧ¿Ë°×ÌÇ£¬×î½üËûÁ©Í¬È¥Âò½øÁËÁ½´Î¼Û¸ñ²»Í¬µÄ°×ÌÇ£¬ÎÊÁ½ÈËÖÐË­½øµÄ°×ÌÇÆ½¾ù¼Û¸ñµÍһЩ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ò»¸öË®³Ø×°Óмף¬ÒÒÁ½¸ö½øË®¹ÜºÍ±ûÒ»¸ö³öË®¹Ü£¬Èô´ò¿ª¼×Ë®¹Ü4Сʱ£¬ÒÒË®¹Ü2СʱºÍ±ûË®¹Ü2Сʱ£¬ÔòË®³ØÖÐÓàË®5¶Ö£¬Èô´ò¿ª¼×Ë®¹Ü2Сʱ£¬ÒÒË®¹Ü3Сʱ£¬±ûË®¹Ü1Сʱ£¬ÔòË®³ØÖÐÓàË®4¶Ö£¬ÎÊ´ò¿ª¼×Ë®¹Ü8Сʱ£¬ÒÒË®¹Ü8Сʱ£¬±ûË®¹Ü4Сʱ£¬³ØÖÐÓàË®¶àÉÙ¶Ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Âò¸£Àû²ÊƱÖн±£¬ÊÇËæ»úʼþ£¨Ìî±ØÈ»¡¢Ëæ»ú¡¢²»¿ÉÄÜ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸