精英家教网 > 初中数学 > 题目详情

【题目】对于点Pab),点Qcd),如果abcd,那么点P与点Q就叫作等差点.例如:点P42),点Q(﹣1,﹣3),因421﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H23),点N(﹣2,﹣3),MNy轴,HMx轴,点P是直线yx+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为_____

【答案】5b5

【解析】

由题意,G(-23)M(2-3),根据等差点的定义可知,当直线yx+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,求出直线经过点GM时的b的值即可判断.

解:由题意,G(-23)M(2-3)

根据等差点的定义可知,当直线yx+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,

当直线yx+b经过点G(-23)时,b5

当直线yx+b经过点M(2-3)时,b-5

∴满足条件的b的范围为:-5b5

故答案为:-5b5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么下列说法不正确的是(  )

A. MNBCB. MNAMC. ANBCD. BMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1的一张纸条,按图,把这一纸条先沿折叠并压平,再沿折叠并压平,若图3,则图2的度数为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】补全解答过程:

已知:如图,直线,直线与直线分别交于点平分.求的度数.

解:交于点,(已知)

.(_______________

,(已知)

.(______________

交于点,(已知)

_____________

_______

平分,(已知)

_______.(角平分线的定义)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OOAB是等边三角形.

1)求证:ABCD为矩形;

2)若AB4,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.

(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①ABBC;②∠ABC90°;③ACBD;④ACBD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是( )

A. ①②B. ②④C. ①③D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家推行“节能减排,低碳经济”政策后,某环保节能设备生产的产品供不应求,若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于44万元,每套产品的售价不低于80万元.已知这种设备的月产量x(套)与每套的售价y1(万元)间满足关系式y1=160﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.

(1)直接写出y2与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?

查看答案和解析>>

同步练习册答案