精英家教网 > 初中数学 > 题目详情

【题目】如图(1),在矩形ABCD中,AB=4,BC=6,P是AD的中点,N是BC延长线上一点,连结PN,过点P作PN的垂线,交AB于点E,交CD的延长线于点F,连结EN,FN,设CN=x,AE=y.

(1)求证:PE=PF;
(2)当0<x< 时,求y关于x的函数表达式;
(3)若将“矩形ABCD”变为“菱形ABCD”,如图(2),AB=BC=4,∠B=60°,当0<x<3时,其它条件不变,求此时y关于x的函数表达式.

【答案】
(1)

证明:∵P是AD的中点,四边形ABCD是矩形,

∴AP=DP,∠A=∠PDF=90°,

在△APE和△DPF中,

∴△APE≌△DPF(ASA),

∴PE=PF


(2)

解:如图1,过点N作NQ⊥AD交AD延长线于Q,

∴四边形CDQN是矩形,

∴CN=DQ=x,CD=NQ=4,

又∵AD=BC=6,P是AD中点,

∴AP=PD=3,

∴PQ=3+x,

∵NP⊥EF,

∴∠APE+∠NPQ=90°,

∵∠APE+∠AEP=90°,

∴∠NPQ=∠PEA,

∵∠A=∠PQN=90°,

∴△APE∽△QNP,

,即

∴y= x+


(3)

解:如图2,过点N作NQ∥CD交AD延长线于点Q,

∴四边形CDQN是平行四边形,

∴CN=DQ=x,CD=NQ=4,

∵PD=PA= AD=2,

∴PQ=2+x,

过点N作NH⊥PQ于H,

∵∠DQN=∠DCN=∠B=60°,

∴HQ=NQcos∠DQN=4× =2,NH=NQsin∠DQN=4× =2

∴PH=PQ﹣HQ=x,

过点E作EG⊥DA交DA延长线于G,

∵AE=y,∠GAE=∠B=60°,

∴AG=AEcos∠GAE= y,EG=AEsin∠GAE= y,

∴PG=PA+AG=2+ y,

∵∠EGP=∠PHN=∠EPN=90°,

∴∠EPG+∠PEG=∠EPG+∠NPD=90°,

∴∠PEG=∠NPD,

∴△PEG∽△NPD,

,即

∴y=


【解析】(1)证△APE≌△DPF即可得;(2)过点N作NQ⊥AD交AD延长线于Q,可得四边形CDQN是矩形,从而表示出PQ、NQ的长,再证△APE∽△QNP可得 ,据此可得函数解析式;(3)过点N作NQ∥CD交AD延长线于点Q,可得四边形CDQN是平行四边形,据此知PQ=2+x、NQ=4,再过点N作NH⊥PQ于H,由∠DQN=60°得HQ=2、NH=2 ,从而表示出PH的长,过点E作EG⊥DA交DA延长线于G,由AE=y、∠GAE=∠B=60°得AG、EG的长,继而可得PG的长,最后证△PEG∽△NPD得 ,据此即可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足为F,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写下列解题过程中的推理根据:
已知:如图,点F、E分别在AB、CD上,AE、DF分别与BC相交于H、G,∠A=∠D,∠1+∠2=180°.说明:AB∥CD

解:∵∠1=∠CGD(
∠1+∠2=180°
.
∴AE//FD (
(两直线平行,同位角相等)
又∠A=∠D
∴∠D=∠BFD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,反比例函数的图象与一次函数y2=kx+b的图象交于点A(-4,-1)和点B1n.

1)求这两个函数的表达式;

2)观察图象,当y1y2时,直接写出自变量x的取值范围;

3)如果点C与点A关于y轴对称,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论: ①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE
其中正确结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算中,正确的是(  )

A. (﹣2a5)(2a5)=254a2B. ab2a2b2

C. x+3)(x2)=x26D. a2a21)=﹣2a3a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,
试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则点(a,b)在第象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直角三角形ABO的周长为100,在其内部有n个小直角三角形周长之和为( )

A.90
B.100
C.110
D.120

查看答案和解析>>

同步练习册答案