精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.
(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1 , A1的坐标是
(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2 , 试在图上画出△A2B2C2的图形.

【答案】
(1)(6,﹣1)
(2)解:如图所示,△A2B2C2即为所求作的三角形.


【解析】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);
(1)连接AO并延长至A1 , 使A1O=AO,连接BO并延长至B1 , 使B1O=BO,连接CO并延长至C1 , 使C1O=CO,然后顺次连接A1、B1、C1即可得到△A1B1C1;再根据平面直角坐标系的特点写出点A1的坐标即可;(2)根据旋转变换,找出点A、B、C绕点(﹣2,1)顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,ADBC于点D,BE是∠ABC的平分线,已知∠ABC=40°,C=60°,求∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DFAB于点G.若BC=4,则线段EG的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系中,点P从原点O以每秒1个单位速度沿x轴正方向运动,运动时间为t秒,作点P关于直线y=tx的对称点Q,过点Qx轴的垂线,垂足为点A.

(1)当t=2时,求AO的长.

(2)当t=3时,求AQ的长.

(3)在点P的运动过程中,用含t的代数式表示线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,AB=2,动点DB开始沿BC向点C运动,到达点C后停止运动,将△ABD绕点A旋转后得到△ACE,则下列说法中,正确的是(  )

①DE的最小值为1;②ADCE的面积是不变的;在整个运动过程中,点E运动的路程为2;④在整个运动过程中,△ADE的周长先变小后变大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x(单位:元/个)之间的对应关系如图所示:

(1)y与x之间的函数关系是
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(单位:元)与销售单价x (单位:元/个)之间的函数关系式;
(3)在(2)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断OMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数 的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数 的图象上另一点C(n,一2).

(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.

查看答案和解析>>

同步练习册答案