精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为

【答案】
【解析】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,
∴∠BAC=∠D′AC′=30°,
∴BM= AB=1,
∴AM= BM=
∴AC=2AM=2
∵∠BAD′=110°,
∴∠CAC′=110°﹣30°﹣30°=50°,
∴点C经过的路线长= = π;
所以答案是:

【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.

.若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?

.若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.
(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1 , A1的坐标是
(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2 , 试在图上画出△A2B2C2的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)求证:AB=AC

2)已知SABC40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),

①若DMN的边与BC平行,求t的值;

②若点E是边AC的中点,问在点M运动的过程中,MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点,与y轴相交于点C(0,3),点B坐标是(3,0),设抛物线的顶点为点D.

(1)求此抛物线的解析式与对称轴;
(2)作直线BC,与抛物线的对称轴交于点E,点P为直线BC上方的二次函数上一个动点(且点P与点B,C不重合),过点P作PF∥DE交直线BC于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PDEF为平行四边形?
②设△PBC的面积为S,求S与m的函数关系式.S是否存在最大值?若存在,求出最大值并求出此时P点坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①兔子和乌龟同时从起点出发;

龟兔再次赛跑的路程为1000米;

③乌龟在途中休息了10分钟;

④兔子在途中750米处追上乌龟.

其中正确的说法共有____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

①以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1
②将△ABC绕A点逆时针旋转90°得到△AB2C2 , 画出△AB2C2 , 并求出AC扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的角平分线上的一点,的中点,点上的一个动点,若的最小值为,则的长度为____

查看答案和解析>>

同步练习册答案