【题目】如图,△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.
(1)如果AB=AC,试猜想四边形ADCF的形状,并证明你的结论;
(2)△ABC满足什么条件时四边形ADCF为正方形,并证明你的结论.
【答案】(1)矩形,证明见解析;(2)△ABC为等腰直角三角形,证明见解析
【解析】
(1)首先利用平行线的性质得出△AEF≌△DEB,进而得出D为BC的中点,然后利用等腰三角形的性质以及矩形的判定得出即可;
(2)当△ABC为等腰直角三角形时,利用正方形的判定得出四边形ADCF为正方形即可.
解:(1)∵AF=DC,AF∥BC,
∴四边形AFCD为平行四边形,
∴AF=CD
又∵E为AD的中点,AF∥BD,
∴AE=DE,∠AFE=∠DBE,
在△AEF和△DEB中
∴△AEF≌△DEB(AAS),
∴BD=AF,∴BD=CD,
即D为BC的中点;
连接AB,
∵AB=AC,D为BC的中点,
∴AD⊥BC,∴∠ADC=90°
∴平行四边形AFCD为矩形;
(2)当△ABC为等腰直角三角形时,四边形ADCF为正方形;
理由:∵△ABC为等腰直角三角形,D为BC中点,
∴AD⊥BC,AD=BC=BD=CD,
∴平行四边形ADCF为矩形,
∴矩形ADCF为正方形.
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:
(1)AC⊥BD;
(2)四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.
(1)一天中制衣所获利润P是多少(用含x的式子表示);
(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.
(3)一天当中安排多少名工人制衣时,所获利润为11806元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点分别在的边上运动(不与点重合),是的平分线,的延长线交角的平分线于点.
(1)若,求的度数.
(2)若,求的度数.
(3)若,请用含的代数式表示的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对两实数,定义一种新运算,规定.
例如:.
(1)填空:________;________.
(2)若,求的值.
(3)若,为整数,且,求满足条件的所有,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知三个顶点的坐标分别为,,,
(1)若将△ABC 向右平移三个单位长度得到△A1B1C1,则点 A1 的坐标为________
(2)若△ABC 与△A2B2C2 关于原点 O 成中心对称,则点 A2 的坐标________;
(3)画出△ABC 绕原点 O 顺时针旋转 90°后的对应图形△A3B3C3,并写出 A3 的坐标_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.
(1)求证:AB与⊙O相切;
(2)若AB=4,求线段GF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com