【题目】如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.
(1)求证:AB与⊙O相切;
(2)若AB=4,求线段GF的长.
【答案】(1)见解析;(2)2.
【解析】试题分析:(1)过点O作OM⊥AB,垂足是M.
证明OM等于圆的半径即可;
(2)过点O作ON⊥BE,垂足是N,连接OF,
由垂径定理得出NG=NF=GF.证出四边形OMBN是矩形,在利用三角函数求得OM和的长,则和即可求得,在中利用勾股定理求得,即可得出的长.
试题解析: 如图,
∵⊙O与AC相切于点D,∴OD⊥AC,∴∠ADO=∠AMO=90°.
∵△ABC是等边三角形,AO⊥BC,
∴∠DAO=∠MAO,∴OM=OD.
∴AB与⊙O相切;
如图,过点O作ON⊥BE,垂足是N,连接OF,
则NG=NF=GF.∵O是BC的中点,
∴OB=2.
在Rt△OBM中,∠MBO=60°,
∴∠BOM=30°,∴BM=BO=1,
∴OM=.
∵BE⊥AB,∴四边形OMBN是矩形,
∴ON=BM=1.∵OF=OM=,
由勾股定理得NF==,
∴GF=2NF=2.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.
(1)如果AB=AC,试猜想四边形ADCF的形状,并证明你的结论;
(2)△ABC满足什么条件时四边形ADCF为正方形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).
(1)画出△ABC关于y轴对称的图形;
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: A′ ;B′ ;C′ ;
(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,将四边形ACBD沿直线EF折叠,使D与C重合,CE与CF分别交AB于点G、H.
(1)求证:△AEG∽△CHG;
(2)△AEG与△BHF是否相似,并说明理由;
(3)若BC=1,求cos∠CHG的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式及顶点坐标;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
(3)在抛物线的对称轴上是否存在一点P.使得以O、B、C、P四点为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD和Rt△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.
(1)在图中画出点O和△CDF;
(2)若∠ABC=130°,直接写出∠AEF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com