【题目】为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.
采购数量(件) | 2 | 4 | 6 | … |
A产品单价(元) | 1460 | 1420 | 1380 | … |
B产品单价(元) | 1280 | 1260 | 1240 | … |
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的 ,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.
【答案】
(1)解:设y1=kx+b,
根据题意,得: ,
解得: ,
∴y1=﹣10x+1300
(2)解:根据题意,得: ,
解得:5≤x≤9,
∵x为整数,
∴x可取的整数值为5、6、7、8、9,
∴该商家共有5种进货方案
(3)解:设A产品的销售单价y2与销售数量a之间的函数关系式为y2=ma+n,
由题意,得: ,
解得: ,
则y2=﹣20a+1500,
∵a=20﹣x,
∴y2=﹣20(20﹣x)+1500=20x+1100,
令总利润为W,
则W=(1760﹣y2)(20﹣x)+(1700﹣y1)x
=(1760﹣20x﹣1100)(20﹣x)+(1700+10x﹣1300)x
=30x2﹣660x+13200
=30(x﹣11)2+9570,
∵当x<11时,W随x的增大而减小,
∴当x=5时,W取得最大值,最大值为30×36+9570=10650,
此时A产品的销售数量20﹣x=15,
答:采购A种产品15件时总利润最大,最大利润为10650元.
【解析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,即得y1与x的关系式;
(2)首先根据题意列不等式组求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;
(3)令总利润为W,根据利润=售价-成本列出W与x的函数关系式,把一般式写成顶点坐标式,求出二次函数的最值即可求出最大利润.
科目:初中数学 来源: 题型:
【题目】阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等, = = ,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3 .
理解应用:
如图,甲船以每小时30 海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10 海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板按如图所示叠放在一起,若固定,将绕着公共顶点,按顺时针方向旋转度,当的一边与的某一边平行时,相应的旋转角的度数为_________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了贯彻落实国家关于增强青少年体质的计划,鄂州市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学七年级(1)班李老师对全班同学进行了调查统计,制成了如图两幅不完整的统计图.
(1)该班五种口味的学生奶的喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整.
(2)在进行调查统计的第二天,李老师为班上每位同学发放一盒学生奶.喜好A味的小聪和喜好B味的小明等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有A味2盒,B味和C味各1盒,李老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小聪和小明喜好的学生奶的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m).
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(﹣2,0),C(0,4),点O′为x轴上一点,⊙O′过A,C两点交x轴于另一点B.
(1)求点O′的坐标;
(2)已知抛物线y=ax2+bx+c过A,B,C三点,且与⊙O′交于另一点E,求抛物线的解析式,并直接写出点E 坐标;
(3)设点P(t,0)是线段OB上一个动点,过点P作直线l⊥x轴,交线段BC于F,交抛物线y=ax2+bx+c于点G,请用t表示四边形BPCG的面积S;
(4)在(3)的条件下,四边形BPCG能否为平行四边形?若能,请求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 , 求△A1B1C1旋转过程中扫过的面积(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).
(1)写出y关于x的函数表达式及自变量x的取值范围;
(2)在如图直角坐标系中,用描点法画出所求函数图象;
(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据《中华人民共和国个人所得税法》,新个税标准将于2019年1月1日起施行.其中每月纳税的起征点增加到5000元,即2019年1月以后每月工资中的5000元将不必缴纳税款.根据相关政策,纳税部门给大家制作了如下纳税表格(未完整):
级数 | 全月应纳税所得额(含税级距) | 税率() | 速算扣除数 |
1 | 不超过3000元的部分 | 0 | |
2 | 超过3000元至12000元的部分 | 210 | |
3 | 超过12000元至25000元的部分 | 1410 | |
4 | 超过25000元至35000元的部分 | ||
5 | 超过35000元至55000元的部分 | 4410 | |
6 | 超过55000元至80000元的部分 | 7160 | |
7 | 超过80000元的部分 | 15160 |
例如:张三2019年1月如果月收入为21000元,则他1月中的元应该纳税,纳税数额为:(元).
(1)如果李士业2019年1月份收入为7000元,则他1月份应纳税多少元?
(2)如果王努利2019年1月份收入为10000元,则他月份应纳税多少元?
(3)钱勒凤跟朋友说,估计自己1月份应纳税3400元,则钱勤奋1月份收入约有多少元?
(4)根据表中各数据关系,求表格中的,的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com