【题目】阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等, = = ,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3 .
理解应用:
如图,甲船以每小时30 海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10 海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?
【答案】
(1)解:△A1A2B2是等边三角形,理由如下:
连结A1B2.
∵甲船以每小时30 海里的速度向正北方向航行,航行20分钟到达A2,
∴A1A2=30 × =10 ,
又∵A2B2=10 ,∠A1A2B2=60°,
∴△A1A2B2是等边三角形
(2)解:过点B作B1N∥A1A2,如图,
∵B1N∥A1A2,
∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,
∴∠A1B1B2=75°﹣15°=60°.
∵△A1A2B2是等边三角形,
∴∠A2A1B2=60°,A1B2=A1A2=10 ,
∴∠B1A1B2=105°﹣60°=45°.
在△B1A1B2中,
∵A1B2=10 ,∠B1A1B2=45°,∠A1B1B2=60°,
由阅读材料可知, = ,
解得B1B2= = ,
所以乙船每小时航行: ÷ =20 海里.
【解析】(1)求出A1A2=10, 已知A2B=10,可求∠A1A2B2=60度,所以△A1A2B2是等边三角形;(2)求乙船的速度须求B1B2,在△B1A1B2中可利用正弦定理,求出B1B2,再除以时间,即得速度.
【考点精析】本题主要考查了关于方向角问题的相关知识点,需要掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA=﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.
(1)求A、B两种型号的汽车的进货单价;
(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)将上面的条形统计图补充完整;
(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?
(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 和 CD 相交于点 O,∠C=∠COA,∠D=∠BOD.求证:AC∥BD.(补全下面的说理过程,并在括号内填上适当的理由)
证明:∵∠C=∠COA,∠D=∠BOD( )
又∠COA=∠BOD( )
∴∠C= .
∴AC∥BD.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.
采购数量(件) | 2 | 4 | 6 | … |
A产品单价(元) | 1460 | 1420 | 1380 | … |
B产品单价(元) | 1280 | 1260 | 1240 | … |
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的 ,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com