精英家教网 > 初中数学 > 题目详情

【题目】图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=

(1)求点M离地面AC的高度BM;
(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.

【答案】
(1)解:过点M作MD⊥OA交OA于点D,

在RT△ODM中,sinα=

∴DM=15cm∴OD=20 cm,

∴AD=BM=5cm


(2)解:延长DM交CF于点E,

易得:∠FME=∠AOM=α,

∵ME=AC﹣DM=55﹣15=40cm,

∴cosα=

∴MF=50cm.


【解析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA= ,所以可得出FN和FM之间的数量关系,即FN= FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为丰富学生的校园生活,某校举行“与爱同行”朗诵比赛,赛后整理参赛同学的成绩,绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.

组别

成绩x(分)

频数(人数)

A

8.0≤x<8.5

a

B

8.5≤x<9.0

8

C

9.0≤x<9.5

15

D

9.5≤x<10

3


(1)图中a= , 这次比赛成绩的众数落在组;
(2)请补全频数分布直方图;
(3)学校决定选派本次比赛成绩最好的3人参加全市中学生朗诵比赛,并为参赛选手准备了2件白色、1件蓝色上衣和黑色、蓝色、白色的裤子各1条,小军先选,他从中随机选取一件上衣和一条裤子搭配成一套衣服,请用画树状图法或列表法求出上衣和裤子搭配成不同颜色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B.过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.

(1)求点A,M的坐标.
(2)当BD为何值时,点F恰好落在该抛物线上?
(3)当BD=1时
求直线MF的解析式,并判断点A是否落在该直线上.
(4)②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1 , S2 , S3 , 则S1:S2:S3=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线AC,BD并于点O,经过点O的直线交AB于E,交CD于F.

(1)求证:OE=OF.
(2)连接DE,BF,则EF与BD满足什么条件时,四边形DEBF是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y= 的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为(

A.(1,
B.(
C.( ,2
D.( ,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,对角线AC、BD交于点O,且AC=2BD,以AD为斜边在菱形ABCD同侧作Rt△ADE.
(1)如图1,当点E落在边AB上时.
①求证:∠BDE=∠BAO;
②求 的值;
③当AF=6时,求DF的长.

(2)如图2,当点E落在菱形ABCD内部,且AE=DE时,猜想OE与OB的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,动点P、Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为t(s),△BPQ的面积为y(cm2).下图中能正确表示整个运动中y关于t的函数关系的大致图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABCD中,BC=8cm,CD=4cm,∠B=60°,点M从点D出发,沿DA方向匀速运动,速度为2cm/s,点N从点B出发,沿BC方向匀速运动,速度为1cm/s,过M作MF⊥CD,垂足为F,延长FM交BA的延长线于点E,连接EN,交AD于点O,设运动时间为t(s)(0<t<4),解答下列问题:

(1)当t为何值时,△AEM≌△DFM?
(2)连接AN,MN,设四边形ANME的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形ANME的面积是ABCD面积的 ?若存在,求出相应的t值,若不存在,说明理由;
(4)连接AC,交EN于点P,当EN⊥AD时,求线段OP的长度.

查看答案和解析>>

同步练习册答案