【题目】在平面直角坐标系xOy中,点A是x轴外的一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”.
(1)若点A的坐标为(0,2),点(2,2),(1,),(,1)中,点A的“等距点”是_______________;
(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标;
(3)记函数()的图象为,的半径为2,圆心坐标为.若在上存在点M,上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N
(1)如图①,若∠BAC=110°,则∠MAN= °,若△AMN的周长为9,则BC=
(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;
(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点沿边从点向点以的速度移动;同时,点从点沿边向点以的速度移动,设点、移动的时间为.问:
当为何值时的面积等于?
当为何值时是直角三角形?
是否存在的值,使的面积最小,若存在,求此时的值及此时的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接正三角形.
作法:如图,
①作直径AB;
②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;
③连接AC,AD,CD.
所以△ACD就是所求的三角形.
根据小董设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:在⊙O中,连接OC,OD,BC,BD,
∵OC=OB=BC,
∴△OBC为等边三角形(_______________)(填推理的依据).
∴∠BOC=60°.
∴∠AOC=180°-∠BOC=120°.
同理∠AOD=120°,
∴∠COD=∠AOC=∠AOD=120°.
∴AC=CD=AD(_______________)(填推理的依据).
∴△ACD是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出kx+b-<0时x的取值范围;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当你站在博物馆的展览厅中时,你知道站在何处观赏最理想吗?如图,设墙壁上的展品最高点P距地面2.5米,最低点Q距地面2米,观赏者的眼睛F距地面1.6米,当视角∠PEQ最大时,站在此处观赏最理想,则此时E到墙壁的距离为( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com