精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边ABCD中,E、F分别是AB、DC上的点,且AE=CF,

(1)求证:ADE≌△CBF;

(2) 当∠DEB=90°时,试说明四边形DEBF为矩形.

【答案】(1)证明见解析(2)四边形DEBF是矩形.

【解析】试题分析:(1)利用平行四边形的性质,根据SAS即可证明.

(2)首先证明四边形DEBF是矩形,由∠DEB=90°,即可推出四边形DEBF是矩形.

试题解析:(1)证明:∵四边形ABCD是平行四边形,

AD=CB,A=C,

ADECBF中,

∴△ADE≌△CBF(SAS).

(2)∵四边形ABCD是平行四边形,

AB=CD,ABCD,

AE=CF,

BE=DF,

∴四边形DEBF是平行四边形,

∵∠DEB=90°,

∴四边形DEBF是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线l1与x轴交于点A,B,与y轴交于点C,l1的解析式为y= x2﹣2,若将抛物线l1平移,使平移后的抛物线l2经过点A,对称轴为直线x=﹣6,抛物线l2与x轴的另一个交点是E,顶点是D,连结OD,AD,ED.

(1)求抛物线l2的解析式;
(2)求证:△ADE∽△DOE;
(3)半径为1的⊙P的圆心P沿着直线x=﹣6从点D运动到F(﹣6,0),运动速度为1单位/秒,运动时间为t秒,⊙P绕着点C顺时针旋转90°得⊙P1 , 随着⊙P的运动,求P1的运动路径长以及当⊙P1与y轴相切的时候t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.

(1)a=______,b=______,c=______;

(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;

(3)A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).

(4)直接写出点BAC中点时的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.

(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?

(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?

(2)如果他们都站在四百米环形跑道的起点处,两人同时同向起跑,几分钟后他们再次相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,纸片ABCD中,AD=5,,过点A作AE⊥BC,垂足为E,沿AE剪下,将它平移至的位置,拼成四边形,则四边形的形状为_____

A.平行四边形 B.菱形 C.矩形 D.正方形

(2)如图2,在(1)中的四边形中,在EF上取一点P,EP=4,剪下,将它平移至的位置,拼成四边形。①求证:四边形是菱形;②求四边形的两条对角线的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B,求∠ACD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两名运动员,选择一人参加市射击比赛,在选拔赛上,每人打10发,其中甲的射击成绩分别为10、8、7、9、8、10、10、9、10、9

计算甲的射击成绩的方差;

经过计算,乙射击的平均成绩是9,方差为1.4,你认为选谁去参加市射击比赛合适,为什么?

查看答案和解析>>

同步练习册答案