【题目】如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(不与点B,C重合),连接PC,PD,设△PCD的面积为S,则S的最大值是________。
【答案】4
【解析】
根据抛物线的解析式求得A、B的坐标,和对称轴方程,根据BC∥x轴,AD∥y轴对称B、C是抛物线上的对称点,所以BD=DC=2,因为顶点A到直线BC的距离最大,所以点P与A重合时,△PCD面积最大,最大值为DCAD=×2×4=4.
∵抛物线y=(x2)2与x轴交于点A,与y轴交于点B.
∴A(2,0),B(0,4),
∵抛物线y=(x2)2与的对称轴为x=2,BC∥x轴,AD∥y轴,
∴直线AD就是抛物线y=(x2)2与的对称轴,
∴B、C关于直线BD对称,
∴BD=DC=2,
∵顶点A到直线BC的距离最大,
∴点P与A重合时,△PCD面积最大,最大值为DCAD=×2×4=4.
故最大值为4.
科目:初中数学 来源: 题型:
【题目】下列表格是某学校女子排球队队员年龄统计表:
年龄(岁) | 13 | 14 | 15 | 16 |
人数(人) | 1 | 2 | 4 | 5 |
(1)该排球队队员年龄的众数是 岁;
(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为 ;
(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.
(1)求证:四边形ECDG是菱形;
(2)若DG=6,AG=,求EH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”共享单车已经成了很多人出行的主要选择.
(1)考虑到共享单车市场竞争激烈,摩拜公司准备用不超过60000元的资金再购进A,B两种规格的自行车100辆,且A型车不超过60辆.已知A型的进价为500元/辆,B型车进价为700元/辆,设购进A型车m辆,求出m的取值范围;
(2)已知A型车每月产生的利润是100元/辆,B型车每月产生的利润是90元/辆,在(1)的条件下,求公司每月的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙0的直径,∠ACB=60°,连接AB,过A,B两点分别作⊙O的切线,两切线交于点P.若已知⊙0半径为1,则△PAB的周长为( )
A. B. C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,
(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;
(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,,CD平分交AB于点D,将△CDB绕点C顺时针旋转到△CEF的位置,点F在AC上.
(1)△CDB旋转了________度;
(2)连结DE,判断DE与BC的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com