【题目】如图,平面直角坐标系中,正方形OABC的点A在轴上,点C在轴上,点B(4,4),点E在BC边上.将△ABE绕点A 顺时针旋转90°,得△AOF,连接EF交轴于点D.
(Ⅰ)若点E的坐标为(,).求
(1)线段EF的长;
(2)点D的坐标;
(Ⅱ)设点E(,),,试用含的式子表示,并求出使取得最大值时点E的坐标.
【答案】(Ⅰ)(1);(2)点D的坐标为(0,);(Ⅱ),点E的坐标为(4,2)时,S有最大值.
【解析】
试题(Ⅰ)(1)由旋转的性质知:△ABE≌△AOF,从而可知CF、EC的长度,利用勾股定理可求EF的长;
(2)求出直线EF的解析式,令x=0,得y的值,从而可求出D点坐标.
(Ⅱ)分别用含有m的代数式表示和,从而S的代数式可以确定,最后利用二次函数的性质求出点E的坐标即可.
试题解析:由旋转的性质知:△ABE≌△AOF,
∴AB=AO,BE=OF
∵B(4,4),E(4,3)
∴OF=BE=1,AB=OC=4,
∴FC=5,EC=3
由勾股定理得:EF=.
(2)由(1)知:E(4,3),F(-1,0)
设直线EF的解析式为:y=kx+b,把E(4,3),F(-1,0)代入得:
解得:
∴直线EF的解析式为:
令x=0,则y=,
∴点D的坐标为(0,);
(Ⅱ)∵点E(4,m)
∴EC=m,BE=4-m,OF=4-m,FC=8-m
∴=,=
∴
=
=
=
∴当m=2时,S有最大值
故当点E的坐标为(4,2)时,S有最大值.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A. 3 B. 4﹣ C. 4 D. 6﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm的速度沿A﹣B﹣C﹣E运动,最终到达点E.若点P运动的时间为x秒,则当x=_____时,△APE的面积等于5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.
(1)求证:EF是⊙O切线;
(2)若AB=15,EF=10,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.
(1)求证:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在正方形ABCD中,点M为BC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EF交BC于点N,连CF,若BE=2,S△CMF=3,则MN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x轴的另一个交点为B,与y轴交于点C,其顶点为D点.
(1)求b的值以及点D的坐标;
(2)求△BCD的面积;
(3)连接BC、BD、CD,在x轴上是否存在点P,使得以A、C、P为顶点的三角形与△BCD相似?若存在,求出点P的坐标;若不存在,说明理由.
(4)在抛物线上是否存在点Q,使得以A、C、Q为顶点且以AC为直角边的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明。
(1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;
(2)当B袋中标有的小球上的数字变为 时(填写所有结果),(1)中的概率为。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com