【题目】如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(m,4).
(1)求m、n的值;
(2)设一次函数的图象与x轴交于点B,求△AOB的面积;
(3)直接写出使函数的值小于函数的值的自变量x的取值范围.
【答案】(1)m=2,n=6;(2)12;(3)x>2.
【解析】试题(1)先把A(m,4)代入正比例函数解析式可计算出m=2,然后把A(2,4)代入y=-x+n计算出n的值;
(2)先确定B点坐标,然后根据三角形面积公式计算;
(3)观察函数图象得到当x>2时,直线y=-x+n都在y=2x的下方,即函数y=-x+n的值小于函数y=2x的值.
试题解析:
(1)正比例函数的图象过点A(m,4).
∴ 4=2 m,
∴ m =2 .
又∵一次函数的图象过点A(m,4).
∴ 4=-2+ n,
∴ n =6.
(2)一次函数的图象与x轴交于点B,
∴令y=0,
∴x=6 点B坐标为(6,0).
∴△AOB的面积.
(3)∵由图象得当x>2时,直线y=-x+n都在y=2x的下方
∴当x>2时,函数y=-x+n的值小于函数y=2x的值.
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.
根据阅读材料与你的理解回答下列问题:
(1)数轴上表示3与﹣2的两点之间的距离是 .
(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为 .
(3)代数式|x+8|可以表示数轴上有理数x与有理数 所对应的两点之间的距离;若|x+8|=5,则x= .
(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小林同学积极参加体育锻炼,天天坚持跑步,他每天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小明跑步情况的记录(单位:m):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
跑步情况(m) | +420 | +460 | -100 | -210 | -330 | +200 | -240 |
(1)星期三小林跑了_____米
(2)小林在跑得最少的一天跑了______米?跑得最多的一天比最少的一天多跑了_____米?
(3)若小林跑步的平均速度为240米/分,求本周内小明用于跑步的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是格点三角形(各顶点是网格线的交点), 每个小方格都是边长为1个单位长度的小正方形.
(1)将△ABC向右平移6个单位长度,画出平移后的△A1B1C1.
(2)将平移后的△A1B1C1绕点B1顺时针旋转90°,画出旋转后的△A2B1C2.
(3)将△ABC沿直线BC翻折,画出翻折后的△A3BC.
(4)试问△ABC能否经过一次旋转后与△A2B1C2重合,若能,请在图中用字母O表示旋转中心并写出旋转角的大小;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:在数轴上描出下列各组数:1与3, 2与-5, -4与-1
(1) 观察描在数轴上的每组数,说明表示每组数的两点之间的距离与这组数有何关系?
答 .
(2)若果a,b表示两个有理数,判断____ (填>,=或<)
(3)当x为何值时:与的值相等。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣2x+a(a<0)与y轴相交于点A,顶点为M.直线y=x﹣a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)试用含a的代数式分别表示点M与N的坐标;
(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;
(3)在抛物线y=x2﹣2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com